(II)若當且僅當時..求的解析式. 查看更多

 

題目列表(包括答案和解析)

如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內?

(II)當AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.

(Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.

【解析】本題主要考查函數的應用,導數及均值不等式的應用等,考查學生分析問題和解決問題的能力   第一問要利用相似比得到結論。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)

第二問,  

當且僅當

(3)令

∴當x > 4,y′> 0,即函數y=在(4,+∞)上單調遞增,∴函數y=在[6,+∞]上也單調遞增.                

∴當x=6時y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>

某沿海地區養殖的一種特色海鮮上市時間僅能持續5個月,預測上市初期和后期會因供應不足使價格呈持續上漲態勢,而中期又將出現供大于求使價格連續下跌.現有三種價格模擬函數:①;②;③.(以上三式中、均為常數,且

(I)為準確研究其價格走勢,應選哪種價格模擬函數(不必說明理由)

(II)若,,求出所選函數的解析式(注:函數定義域是.其中表示8月1日,表示9月1日,…,以此類推);

(III)在(II)的條件下研究下面課題:為保證養殖戶的經濟效益,當地政府計劃在價格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內價格下跌.

 

查看答案和解析>>

某沿海地區養殖的一種特色海鮮上市時間僅能持續5個月,預測上市初期和后期會因供應不足使價格呈持續上漲態勢,而中期又將出現供大于求使價格連續下跌.現有三種價格模擬函數:①;②;③.(以上三式中、均為常數,且
(I)為準確研究其價格走勢,應選哪種價格模擬函數(不必說明理由)
(II)若,,求出所選函數的解析式(注:函數定義域是.其中表示8月1日,表示9月1日,…,以此類推);
(III)在(II)的條件下研究下面課題:為保證養殖戶的經濟效益,當地政府計劃在價格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內價格下跌.

查看答案和解析>>

某沿海地區養殖的一種特色海鮮上市時間僅能持續5個月,預測上市初期和后期會因供應不足使價格呈持續上漲態勢,而中期又將出現供大于求使價格連續下跌.現有三種價格模擬函數:①;②;③.(以上三式中、均為常數,且
(I)為準確研究其價格走勢,應選哪種價格模擬函數(不必說明理由)
(II)若,,求出所選函數的解析式(注:函數定義域是.其中表示8月1日,表示9月1日,…,以此類推);
(III)在(II)的條件下研究下面課題:為保證養殖戶的經濟效益,當地政府計劃在價格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內價格下跌.

查看答案和解析>>

某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售。如果當天賣不完,剩下的玫瑰花做垃圾處理。

(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數解析式。

(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數

10

20

16

16

15

13

10

(i)假設花店在這100天內每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數;

(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發生的概率,求當天的利潤不少于75元的概率.

【命題意圖】本題主要考查給出樣本頻數分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.

【解析】(Ⅰ)當日需求量時,利潤=85;

當日需求量時,利潤

關于的解析式為;

(Ⅱ)(i)這100天中有10天的日利潤為55元,20天的日利潤為65元,16天的日利潤為75元,54天的日利潤為85元,所以這100天的平均利潤為

=76.4;

(ii)利潤不低于75元當且僅當日需求不少于16枝,故當天的利潤不少于75元的概率為

 

查看答案和解析>>

 

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

C

C

B

B

A

B

C

D

C

D

二、填空題

13.2     14.-1      15.60      16.③④

三、解答題

17.解:(1)∵,,

.                …………2分

,             …………4分

,∴.…………5分

   (2)∵,,

.              …………7分

,

.    …………9分

,

.…………10分

18. (1)證明:連結BD交AC于點M,取BE的中點N, 

連結MN,則MN∥ED且MN=ED,依題意,

知AG∥ED且AG=ED,

∴MN∥AG且MN=AG.

故四邊形MNAG是平行四邊形,

AM∥GN,即AC∥GN,…………4分

又∵

∴ AC∥平面GBE.    …………6分

   (2)延長EG交DA的延長線于H點,

連結BH,作AP⊥BH于P點,連結GP.

∵ 平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD ,

GH平面ADEF, GA⊥AD.

∴ GA⊥平面ABCD,由三垂線定理,知GP⊥BH,

故∠GPA就是所求二面角的平面角.                        …………8分

∵ 平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD ,ED⊥AD.

∴ ED⊥平面ABCD,

故∠EBD就是直線BE與平面ABCD成的角,…………10分

知∠EBD=45°,設AB=a,則BE=BD=a.

ABH中:AH=AB= a,

BH=,AP=a.

GPA中:由AG=a

=AP ,GA⊥AP,知∠GPA=45°.

故平面GBE與平面ABCD所成的銳二面角的大小為45°.…………12分

19.解:(1)記A0表示事件“取出的2件產品中無二等品”,A1表示事件“取出的2件產品中恰有1件是二等品”.

       則A0、A1互斥,且A=A0+A1,

故P (A)=P (A0+A1)=P (A0) +P (A1)=(1-p)2+Cp (1-p)=1-p2

依題意,知1-p2=0.96,

又p>0,得p=0.2.…………6分

   (2)若該批產品共100件,由(1)知,其中共有二等品100×0.2=20件.

記C表示事件“取出的2件產品中無二等品”,

則事件B與事件C互斥,依題意,知

P(C)=.故P (B)=1-P(C)=.…………12分

20.解 (1)上單調遞增,上單調遞減,

      有兩根,……3分

               ……6分

   (2)令,

      則,            ……………8分

     因為上恒大于0,

       所以上單調遞增,

       故,   ,        …………10分

        .               ……………12分

21.解:(1)依題意,知=10b-b =9b.

0,

,

,

9b= b.…………4分

    (2)依題意,知=5c3c =2c

2 c,

2 c,

即    2 c

2c+(n-1) 2c=2 n c.…………8分

   (3)由a、b是互相垂直的單位向量,c = a+b知,b •c= b •( a+b)=0+1=1.

得    anb •2 n c=2 n.記數列{an}的前n項和為Sn

則有    Sn=2×9+4×3+6×1+8×+…+2 n.①…………10分

Sn=2×3+4×1+6×+8×+…+2(n-1)+ 2 n.②

①-②得,Sn=2[9+3+1++…+]- 2 n

故Sn =.…………12分

22.解:(I)設依題意得

      

消去,整理得.…………4分

    當時,方程表示焦點在軸上的橢圓;

    當時,方程表示焦點在軸上的橢圓;

    當時,方程表示圓.        …………6分

   (II)當時,方程為,

     設直線的方程為,

消去.…………10分

       根據已知可得,故有,

*直線的斜率為. …………12分

 

 

 

 


同步練習冊答案
久久精品免费一区二区视