∴.∴在上單增.---------6分 查看更多

 

題目列表(包括答案和解析)

函數是定義在上的奇函數,且。

(1)求實數a,b,并確定函數的解析式;

(2)判斷在(-1,1)上的單調性,并用定義證明你的結論;

(3)寫出的單調減區間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

【解析】本試題主要考查了函數的解析式和奇偶性和單調性的綜合運用。第一問中,利用函數是定義在上的奇函數,且

解得,

(2)中,利用單調性的定義,作差變形判定可得單調遞增函數。

(3)中,由2知,單調減區間為,并由此得到當,x=-1時,,當x=1時,

解:(1)是奇函數,

,,………………2分

,又,,,

(2)任取,且,

,………………6分

,

,,

在(-1,1)上是增函數。…………………………………………8分

(3)單調減區間為…………………………………………10分

當,x=-1時,,當x=1時,

 

查看答案和解析>>

已知函數.(

(1)若在區間上單調遞增,求實數的取值范圍;

(2)若在區間上,函數的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區間上單調遞增,則在區間上恒成立,然后分離參數法得到,進而得到范圍;第二問中,在區間上,函數的圖象恒在曲線下方等價于在區間上恒成立.然后求解得到。

解:(1)在區間上單調遞增,

在區間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區間上,函數的圖象恒在曲線下方等價于在區間上恒成立.   

        …………9分

① 若,令,得極值點,,

,即時,在(,+∞)上有,此時在區間上是增函數,并且在該區間上有,不合題意;

,即時,同理可知,在區間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區間上恒有,從而在區間上是減函數;

要使在此區間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數的圖象恒在直線下方.

 

查看答案和解析>>

(本題滿分16分)第(1)小題滿分6分,第(2)小題滿分5分,第(3)小題滿分5分。

已知函數。

(1)當時,畫出函數的大致圖像,并寫出其單調遞增區間;

(2)若函數上是單調遞減函數,求實數的取值范圍;

(3)若不等式恒成立,求實數的取值范圍.

 

查看答案和解析>>

(本題滿分16分)第(1)小題滿分6分,第(2)小題滿分5分,第(3)小題滿分5分。

已知函數。

(1)當時,畫出函數的大致圖像,并寫出其單調遞增區間;

(2)若函數上是單調遞減函數,求實數的取值范圍;

(3)若不等式恒成立,求實數的取值范圍.

 

查看答案和解析>>

(本大題滿分18分)本大題共有3個小題,第1小題滿分4分,第2小題滿6分,第3小題滿8分.

已知函數,

(1)當為偶函數時,求的值。

(2)當時,上是單調遞增函數,求的取值范圍。

(3)當時,(其中),若,且函數的圖像關于點對稱,在處取得最小值,試探討應該滿足的條件。

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视