題目列表(包括答案和解析)
中,
邊的高為
,若
,
,
,
,
,則
(A) (B)
(C)
(D)
【解析】如圖,在直角三角形中,
,則
,所以
,所以
,即
,選D.
△ABC中,AB邊的高為CD,若a·b=0,|a|=1,|b|=2,則
(A)
(B)
(C)
(D)
【解析】在直角三角形中,,則
,所以
,所以
,即
,選D.
設函數.
(I)求的單調區間;
(II)當0<a<2時,求函數在區間
上的最小值.
【解析】第一問定義域為真數大于零,得到.
.
令,則
,所以
或
,得到結論。
第二問中, (
).
.
因為0<a<2,所以,
.令
可得
.
對參數討論的得到最值。
所以函數在
上為減函數,在
上為增函數.
(I)定義域為. ………………………1分
.
令,則
,所以
或
. ……………………3分
因為定義域為,所以
.
令,則
,所以
.
因為定義域為,所以
. ………………………5分
所以函數的單調遞增區間為,
單調遞減區間為.
………………………7分
(II) (
).
.
因為0<a<2,所以,
.令
可得
.…………9分
所以函數在
上為減函數,在
上為增函數.
①當,即
時,
在區間上,
在
上為減函數,在
上為增函數.
所以. ………………………10分
②當,即
時,
在區間
上為減函數.
所以.
綜上所述,當時,
;
當時,
設△的內角
所對邊的長分別為
,且有
(Ⅰ)求角A的大。
(Ⅱ)若,
,
為
的中點,求
的長。
【解析】(1)由題,,則
,故
,即
.
(2)因,
,因
為
的中點,故
,則
,所以
在△ABC中,為三個內角
為三條邊,
且
(I)判斷△ABC的形狀;
(II)若,求
的取值范圍.
【解析】本題主要考查正余弦定理及向量運算
第一問利用正弦定理可知,邊化為角得到
所以得到B=2C,然后利用內角和定理得到三角形的形狀。
第二問中,
得到。
(1)解:由及正弦定理有:
∴B=2C,或B+2C,若B=2C,且
,∴
,
;∴B+2C
,則A=C,∴
是等腰三角形。
(2)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com