(Ⅰ)令要使有t意義.必須1+x≥0且1-x≥0.即-1≤x≤1, 查看更多

 

題目列表(包括答案和解析)

設函數f(x)=-cos2x-4t•sin
x
2
cos
x
2
+2t2-6t+2
(x∈R),其中t∈R,將f(x)的最小值記為g(t).
(1)求g(t)的表達式;
(2)當-1≤t≤1時,要使關于t的方程g(t)=kt有且僅有一個實根,求實數k的取值范圍

查看答案和解析>>

如右圖所示,定義在D上的函數f(x),如果滿足:對?x∈D,常數A,都有f(x)≥A成立,則稱函數f(x)在D上有下界,其中A稱為函數的下界.(提示:圖中的常數A可以是正數,也可以是負數或零)
(1)試判斷函數f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說明理由;
(2)已知某質點的運動方程為S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一時刻該質點的瞬時速度是以A=
1
2
為下界的函數,求實數a的取值范圍.

查看答案和解析>>

(2007•揭陽二模)如圖(1)示,定義在D上的函數f(x),如果滿足:對?x∈D,?常數A,都有f(x)≥A成立,則稱函數f(x)在D上有下界,其中A稱為函數的下界.(提示:圖(1)、(2)中的常數A、B可以是正數,也可以是負數或零)

(Ⅰ)試判斷函數f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說明理由;
(Ⅱ)又如具有如圖(2)特征的函數稱為在D上有上界.請你類比函數有下界的定義,給出函數f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數在(-∞,0)上是否有上界?并說明理由;
(Ⅲ)已知某質點的運動方程為S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一時刻該質點的瞬時速度是以A=
1
2
為下界的函數,求實數a的取值范圍.

查看答案和解析>>

定義在D上的函數,如果滿足:存在常數M>0,對任意x∈D都有|f(x)|≤M成立,則稱f(x)是D上的有界函數.
(1)試判斷函數f(x)=2sin(x+
π
6
)+3
在實數集R上,函數g(x)=x3+
3
x
[
1
3
,3]
上是不是有界函數?若是,請給出證明;若不是,請說出理由.
(2)若已知某質點的運動距離S與時間t的關系為S(t)=
1
4
t4+3lnt-at
,要使在t∈[
1
3
,3]
上每一時刻的瞬時速度的絕對值都不大于13,求實數a的取值范圍.

查看答案和解析>>

要使有意義,則應有(     )

A.m      B.m≥-1         C.m≤-1或m          D.-1≤m

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视