設x>-2,n為正整數.比較(1+x)n與1+nx的大小 查看更多

 

題目列表(包括答案和解析)

定義:
.
a    b
c    d 
.
=ad-bc
,設f(x)=  
.
x-3k    x
2k          x 
.
+3k•2k
(x∈R,k為正整數)
(1)分別求出當k=1,k=2時方程f(x)=0的解
(2)設f(x)≤0的解集為[a2k-1,a2k],求a1+a2+a3+a4的值及數列{an}的前2n項和
(3)對于(2)中的數列{an},設bn=
(-1)n
a2n-1a2n
,求數列{bn}的前n項和Tn的最大值.

查看答案和解析>>

定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(1)證明:數列{2an+1}是“平方數列”,且數列{lg(2an+1)}為等比數列.
(2)設(1)中“平方數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式.
(3)記bn=log2an+1Tn,求數列{bn}的前n項之和Sn,并求使Sn>4020的n的最小值.

查看答案和解析>>

(2007•長寧區一模)定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=x2+4x+2的圖象上,其中n為正整數.
(1)判斷數列{an+2}是否為“平方遞推數列”?說明理由.
(2)證明數列{lg(an+2)}為等比數列,并求數列{an}的通項.
(3)設Tn=(2+a1)(2+a2)…(2+an),求Tn關于n的表達式.

查看答案和解析>>

(2012•石景山區一模)定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(1)證明:數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列.
(2)設(1)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式.
(3)記bn=log2an+1Tn,求數列{bn}的前n項之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

(本小題滿分12分)已知常數a > 0, n為正整數,f n ( x ) = x n – ( x + a)n ( x > 0 )是關于x的函數.(1) 判定函數f n ( x )的單調性,并證明你的結論.(2) 對任意n ?? a , 證明f `n + 1 ( n + 1 ) < ( n + 1 )fn`(n)

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视