f極小=-2,f極大的圖象大致為 查看更多

 

題目列表(包括答案和解析)

有一段“三段論”推理是這樣的:“對于可導函數f(x),如果f′(x0)=0,那么x=x0是函數f(x)的極值點;因為函數f(x)=x3在x=0處的導數值f′(0)=0,所以x=0是函數f(x)=x3的極值點.”以上推理中
(1)大前提錯誤
(2)小前提錯誤
(3)推理形式正確
(4)結論正確
你認為正確的序號為
 

查看答案和解析>>

已知函數f(x)=ax--3ln x,其中a為常數.

(1)當函數f(x)的圖象在點處的切線的斜率為1,求函數f(x)上的最小值;

(2)若函數f(x)在區間(0,+)上既有極大值又有極小值,a的取值范圍;

(3)(1)的條件下,過點P(1,-4)作函數F(x)=x2[f(x)+3lnx-3]圖象的切線,試問這樣的切線有幾條?并求出這些切線方程.

 

查看答案和解析>>

已知函數f(x)=ax--3ln x,其中a為常數.
(1)當函數f(x)的圖象在點處的切線的斜率為1時,求函數f(x)在上的最小值;
(2)若函數f(x)在區間(0,+∞)上既有極大值又有極小值,求a的取值范圍;
(3)在(1)的條件下,過點P(1,-4)作函數F(x)=x2[f(x)+3lnx-3]圖象的切線,試問這樣的切線有幾條?并求出這些切線方程.

查看答案和解析>>

已知函數f(x)=ax--3ln x,其中a為常數.
(1)當函數f(x)的圖象在點處的切線的斜率為1時,求函數f(x)在上的最小值;
(2)若函數f(x)在區間(0,+∞)上既有極大值又有極小值,求a的取值范圍;
(3)在(1)的條件下,過點P(1,-4)作函數F(x)=x2[f(x)+3lnx-3]圖象的切線,試問這樣的切線有幾條?并求出這些切線方程.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视