變形1:計算 查看更多

 

題目列表(包括答案和解析)

函數概念的發展歷程

  17世紀,科學家們致力于運動的研究,如計算天體的位置,遠距離航海中對經度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關系,并根據這種關系對事物的變化規律作出判斷,如根據炮彈的速度推測它能達到的高度和射程.這正是函數產生和發展的背景.

  “function”一詞最初由德國數學家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數學家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數”.

  萊布尼茲用“函數”表示隨曲線的變化而改變的幾何量,如坐標、切線等.1718年,他的學生,瑞士數學家約翰·伯努利(J.Bernoulli,1667~1748)強調函數要用公式表示.后來,數學家認為這不是判斷函數的標準.只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數學家歐拉(L.Euler,1707~1783)將函數定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數”.

  當時很多數學家對于不用公式表示函數很不習慣,甚至抱懷疑態度.函數的概念仍然是比較模糊的.

  隨著對微積分研究的深入,18世紀末19世紀初,人們對函數的認識向前推進了.德國數學家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應,則y是x的函數”.這個定義較清楚地說明了函數的內涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀70年代以后,隨著集合概念的出現,函數概念又進而用更加嚴謹的集合和對應語言表述,這就是本節學習的函數概念.

  綜上所述可知,函數概念的發展與生產、生活以及科學技術的實際需要緊密相關,而且隨著研究的深入,函數概念不斷得到嚴謹化、精確化的表達,這與我們學習函數的過程是一樣的.

你能以函數概念的發展為背景,談談從初中到高中學習函數概念的體會嗎?

1.探尋科學家發現問題的過程,對指導我們的學習有什么現實意義?

2.萊布尼茲、狄利克雷等科學家有哪些品質值得我們學習?

查看答案和解析>>

(本小題滿分12分)

一個不透明的袋子中裝有4個形狀相同的小球,分別標有不同的數字2,3,4,,現從袋中隨機摸出2個球,并計算摸出的這2個球上的數字之和,記錄后將小球放回袋中攪勻,進行重復試驗。記A事件為“數字之和為7”.試驗數據如下表

摸球總次數

10

20

30

60

90

120

180

240

330

450

“和為7”出現的頻數

1

9

14

24

26

37

58

82

109

150

“和為7”出現的頻率

0.10

0.45

0.47

0.40

0.29

0.31

0.32

0.34

0.33

0.33

(參考數據:

(Ⅰ)如果試驗繼續下去,根據上表數據,出現“數字之和為7”的頻率將穩定在它的概率附近。試估計“出現數字之和為7”的概率,并求的值;

(Ⅱ)在(Ⅰ)的條件下,設定一種游戲規則:每次摸2球,若數字和為7,則可獲得獎金7元,否則需交5元。某人摸球3次,設其獲利金額為隨機變量元,求的數學期望和方差。

 

查看答案和解析>>

(本小題滿分12分)
一個不透明的袋子中裝有4個形狀相同的小球,分別標有不同的數字2,3,4,,現從袋中隨機摸出2個球,并計算摸出的這2個球上的數字之和,記錄后將小球放回袋中攪勻,進行重復試驗。記A事件為“數字之和為7”.試驗數據如下表

摸球總次數
10
20
30
60
90
120
180
240
330
450
“和為7”出現的頻數
1
9
14
24
26
37
58
82
109
150
“和為7”出現的頻率
0.10
0.45
0.47
0.40
0.29
0.31
0.32
0.34
0.33
0.33
(參考數據:
(Ⅰ)如果試驗繼續下去,根據上表數據,出現“數字之和為7”的頻率將穩定在它的概率附近。試估計“出現數字之和為7”的概率,并求的值;
(Ⅱ)在(Ⅰ)的條件下,設定一種游戲規則:每次摸2球,若數字和為7,則可獲得獎金7元,否則需交5元。某人摸球3次,設其獲利金額為隨機變量元,求的數學期望和方差。

查看答案和解析>>

在A、B、C、D四小題中只能選做2題,每小題10,共計20分。請在答題卡指定區域作答。解答應寫出文字說明、證明過程或演算步驟。

A、選修4-1:幾何證明選講

   如圖,已知梯形ABCD為圓內接四邊形,AD//BC,過C作該圓的切線,交AD的延長線于E,求證:ΔABC∽ΔEDC。

B、選修4-2:矩形與變換

已知 為矩陣屬于λ的一個特征向量,求實數a,λ的值及A2。

C、選修4-4:坐標系與參數方程

   在平面直角坐標系xoy中,曲線C的參數方程為(α為參數),曲線D的參數方程為,(t為參數)。若曲線C、D有公共點,求實數m的取值范圍。

D、選修4-5:不等式選講

   已知a,b都是正實數,且ab=2。求證:(1+2a)(1+b)≥9。

 

查看答案和解析>>

在A、B、C、D四小題中只能選做2題,每小題10,共計20分。請在答題卡指定區域作答。解答應寫出文字說明、證明過程或演算步驟。
A、選修4-1:幾何證明選講
如圖,已知梯形ABCD為圓內接四邊形,AD//BC,過C作該圓的切線,交AD的延長線于E,求證:ΔABC∽ΔEDC。

B、選修4-2:矩形與變換
已知為矩陣屬于λ的一個特征向量,求實數a,λ的值及A2。
C、選修4-4:坐標系與參數方程
在平面直角坐標系xoy中,曲線C的參數方程為(α為參數),曲線D的參數方程為,(t為參數)。若曲線C、D有公共點,求實數m的取值范圍。
D、選修4-5:不等式選講
已知a,b都是正實數,且ab=2。求證:(1+2a)(1+b)≥9。

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视