變形2:能寫出x3=1的三個根嗎?(1..) 查看更多

 

題目列表(包括答案和解析)

設點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當時,試寫出拋物線上的三個定點、的坐標,從而使得

(2)當時,若,

求證:;

(3) 當時,某同學對(2)的逆命題,即:

“若,則.”

開展了研究并發現其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.

由拋物線定義得到

第二問設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為,

,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,不妨取;;

解:(1)拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

 

因為,所以,

故可取滿足條件.

(2)設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

   又因為

;

所以.

(3) ①取時,拋物線的焦點為,

,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;,

.

,,,是一個當時,該逆命題的一個反例.(反例不唯一)

② 設,分別過

拋物線的準線的垂線,垂足分別為,

及拋物線的定義得

,即.

因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

,

,所以.

(說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標)滿足 ”,即:

“當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設,

分別過作拋物線準線的垂線,垂足分別為,由

及拋物線的定義得,即,則

又由,所以,故命題為真.

補充條件2:“點與點為偶數,關于軸對稱”,即:

“當時,若,且點與點為偶數,關于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

設有一列北上的火車,已知?康恼居赡现帘狈謩e為S1,S2,…,S10等10站.若甲在S3站買票,乙在S6站買票.設基本事件空間Ω表示火車所有可能?康恼,令A表示甲可能到達的站的集合,B表示乙可能到達的站的集合.

(1)你能寫出該事件的基本事件空間Ω嗎?

(2)寫出事件A、事件B包含的基本事件.

(3)鐵路局需要為該列車準備多少種北上的車票?

查看答案和解析>>

對于三次函數f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數y=f(x)的導函數y=f′(x)的導數,若f′′(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.現已知f(x)=x3-3x2+2x-2,請解答下列問題:
(Ⅰ)求函數f(x)的“拐點”A的坐標;
(Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數都成立的有關“拐點”的一個結論(此結論不要求證明);
(Ⅲ)若另一個三次函數G(x)的“拐點”為B(0,1),且一次項系數為0,當x1>0,x2>0(x1≠x2)時,試比較
G(x1)+G(x2)
2
G(
x1+x2
2
)
的大。

查看答案和解析>>

對于三次函數f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數y=f(x)的導函數y=f′(x)的導數,若f′′(x)=0有實數解x,則稱點(x,f(x))為函數y=f(x)的“拐點”.現已知f(x)=x3-3x2+2x-2,請解答下列問題:
(Ⅰ)求函數f(x)的“拐點”A的坐標;
(Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數都成立的有關“拐點”的一個結論(此結論不要求證明);
(Ⅲ)若另一個三次函數G(x)的“拐點”為B(0,1),且一次項系數為0,當x1>0,x2>0(x1≠x2)時,試比較的大小.

查看答案和解析>>

對于三次函數f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數y=f(x)的導函數y=f′(x)的導數,若f′′(x)=0有實數解x,則稱點(x,f(x))為函數y=f(x)的“拐點”.現已知f(x)=x3-3x2+2x-2,請解答下列問題:
(Ⅰ)求函數f(x)的“拐點”A的坐標;
(Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數都成立的有關“拐點”的一個結論(此結論不要求證明);
(Ⅲ)若另一個三次函數G(x)的“拐點”為B(0,1),且一次項系數為0,當x1>0,x2>0(x1≠x2)時,試比較的大。

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视