[情況反饋] 第二課時:二階矩陣與平面向量的乘法[教學目標][教學難點]變換形式的轉換[教學過程] 查看更多

 

題目列表(包括答案和解析)

已知二階矩陣M有特征值λ=8及對應的一個特征向量
e1
=[
 
1
1
],并且矩陣M對應的變換將點(-1,2)變換成(-2,4).
(1)求矩陣M;
(2)求矩陣M的另一個特征值.

查看答案和解析>>

二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).設直線l在變換M作用下得到了直線m:x-y=4,求l的方程.

查看答案和解析>>

已知二階矩陣A=
12
01
,且AX=
-10
12
,則二階矩陣X=
 

查看答案和解析>>

(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應的一個特征向量
e1
=
1
1
,并且矩陣M對應的變換將點(-1,2)變換成(3,0),求矩陣M.
(2)選修4-4:坐標系與參數方程
過點M(3,4),傾斜角為
π
6
的直線l與圓C:
x=2+5cosθ
y=1+5sinθ
(θ為參數)相交于A、B兩點,試確定|MA|•|MB|的值.
(3)選修4-5:不等式選講
已知實數a,b,c,d,e滿足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,試確定e的最大值.

查看答案和解析>>

二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(1)求矩陣M;
(2)設直線l在變換M作用下得到了直線m:x-y=4,求l的方程.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视