拋物線.直線.圓參數方程及其幾何意義 查看更多

 

題目列表(包括答案和解析)

選修4-2:矩陣及其變換
(1)如圖,向量
OA
OB
被矩陣M作用后分別變成
OA′
OB′
,
(Ⅰ)求矩陣M;
(Ⅱ)并求y=sin(x+
π
3
)
在M作用后的函數解析式;
選修4-4:坐標系與參數方程
( 2)在直角坐標系x0y中,直線l的參數方程為
x=3-
2
2
t
y=
5
+
2
2
t
(t為參數),在極坐標系(與直角坐標系x0y取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標方程;
(Ⅱ)設圓C與直線l交于點A,B.若點P的坐標為(3,
5
),求|PA|+|PB|.
選修4-5:不等式選講
(3)已知x,y,z為正實數,且
1
x
+
1
y
+
1
z
=1
,求x+4y+9z的最小值及取得最小值時x,y,z的值.

查看答案和解析>>

精英家教網A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點A,D為PA的中點,
過點D引割線交⊙O于B,C兩點,求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應的一個特征向量.
C.選修4-4:坐標系與參數方程
在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為
x=t
y=1+2t
(t為參數),判斷直線l和圓C的位置關系.
D.選修4-5:不等式選講
求函數y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

(1)選修4-2矩陣與變換:
已知矩陣M=
.
2a
21
.
,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P′(-4,0).
①求實數a的值;
②求矩陣M的特征值及其對應的特征向量.
(2)選修4-4參數方程與極坐標:
已知曲線C的極坐標方程是ρ=4cosθ.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數方程是
x=
2
2
t+m
y=
2
2
t
(t是參數).若l與C相交于AB兩點,且AB=
14

①求圓的普通方程,并求出圓心與半徑;
②求實數m的值.

查看答案和解析>>

B.已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應的一個特征向量.
C.在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為
x=t
y=1+2t
(t為參數),判斷直線l和圓C的位置關系.

查看答案和解析>>

(1)已知二階矩陣A對應的變換將點(1,0)與點(-1,1)分別變換成點(2,3)與點(-2,-4),求矩陣A及其特征值.
(2)在平面直角坐標系xOy中,已知直線l的參數方程是
x=2+t
y=2-2t
(t為參數),圓C的參數方程是
x=1+4cosa
y=4sina
(a為參數),求直線l被圓C截得的弦長.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视