題目列表(包括答案和解析)
已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點(0,1), 問是否存在直線
與橢圓
交于
兩點,且
?若存在,求出
的取值范圍,若不存在,請說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關系的運用。
第一問中,可設橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以
,
又由于
所求橢圓C的標準方程為
第二問中,
假設存在這樣的直線,設
,MN的中點為
因為|ME|=|NE|所以MNEF所以
(i)其中若時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮情形:
由,得,
,得
代入1,2式中得到范圍。
(Ⅰ) 可設橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以
,
又由于
所求橢圓C的標準方程為
(Ⅱ) 假設存在這樣的直線,設
,MN的中點為
因為|ME|=|NE|所以MNEF所以
(i)其中若時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮情形:
由,得,
,得
……② ……………………9分
則.
代入①式得,解得………………………………………12分
代入②式得,得
.
綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,
于是
,所以
(2) ,
設平面PCD的法向量
,
則,即
.不防設
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為.
(3)設點E的坐標為(0,0,h),其中,由此得
.
由,故
所以,,解得
,即
.
解法二:(1)證明:由,可得
,又由
,
,故
.又
,所以
.
(2)如圖,作于點H,連接DH.由
,
,可得
.
因此,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,
因此所以二面角
的正弦值為
.
(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故
或其補角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故
在中,由
,
,
可得.由余弦定理,
,
所以.
【答案】
【解析】設,有幾何意義知
的最小值為
, 又因為存在實數x滿足
,所以只要2大于等于f(x)的最小值即可.即
2,解得:
∈
,所以a的取值范圍是
.故答案為:
.
產品凈重小于100克的概率為(0.050+0.100)×2=0.300,
已知樣本中產品凈重小于100克的個數是36,設樣本容量為,
則,所以
,凈重大于或等于98克并且小于
104克的產品的概率為(0.100+0.150+0.125)×2=0.75,所以樣本
中凈重大于或等于98克并且小于104克的產品的個數是
120×0.75=90.故選A.
答案:A
【命題立意】:本題考查了統計與概率的知識,讀懂頻率分布直方圖,會計算概率以及樣本中有關的數據.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com