(II)由的面積.得. 查看更多

 

題目列表(包括答案和解析)

(1)選修4-4:矩陣與變換
已知曲線C1:y=繞原點逆時針旋轉45°后可得到曲線C2:y2-x2=2,
(I)求由曲線C1變換到曲線C2對應的矩陣M1;    
(II)若矩陣,求曲線C1依次經過矩陣M1,M2對應的變換T1,T2變換后得到的曲線方程.
(2)選修4-4:坐標系與參數方程
已知直線l的極坐標方程是ρcosθ+ρsinθ-1=0.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,在曲線C:(θ為參數)上求一點,使它到直線l的距離最小,并求出該點坐標和最小距離.
(3)(選修4-5:不等式選講)
將12cm長的細鐵線截成三條長度分別為a、b、c的線段,
(I)求以a、b、c為長、寬、高的長方體的體積的最大值;
(II)若這三條線段分別圍成三個正三角形,求這三個正三角形面積和的最小值.

查看答案和解析>>

在一定面積的水域中養殖某種魚類,每個網箱的產量P是網箱個數x的一次函數,如果放置4個網箱,則每個網箱的產量為16噸;如果放置7個網箱,則每個網箱的產量為10噸,由于該水域面積限制,最多只能放置10個網箱.
(1)試問放置多少個網箱時,總產量Q最高?
(2)若魚的市場價為m萬元/噸,養殖的總成本為5lnx+1萬元.
(i)當m=0.25時,應放置多少個網箱才能使總收益y最大?
(ii)當m≥0.25時,求使得收益y最高的所有可能的x值組成的集合.

查看答案和解析>>

在一定面積的水域中養殖某種魚類,每個網箱的產量P是網箱個數x的一次函數,如果放置4個網箱,則每個網箱的產量為16噸;如果放置7個網箱,則每個網箱的產量為10噸,由于該水域面積限制,最多只能放置10個網箱.
(1)試問放置多少個網箱時,總產量Q最高?
(2)若魚的市場價為m萬元/噸,養殖的總成本為5lnx+1萬元.
(i)當m=0.25時,應放置多少個網箱才能使總收益y最大?
(ii)當m≥0.25時,求使得收益y最高的所有可能的x值組成的集合.

查看答案和解析>>

(14分)已知函數f(x)=的圖像在點P(0,f(0))處的切線方程為y=3x-2

(Ⅰ)求實數a,b的值;

(Ⅱ)設g(x)=f(x)+是[)上的增函數。

  (i)求實數m的最大值;

   (ii)當m取最大值時,是否存在點Q,使得過點Q的直線若能與曲線y=g(x)圍成兩個封閉圖形,則這兩個封閉圖形的面積總相等?若存在,寫出點Q的坐標(可以不必說明理由);若不存在,說明理由。

查看答案和解析>>

如圖所示的多面體V-ABCD,它的正視圖為直角三角形,側視圖為等腰三角形,俯視圖的邊界為正方形(尺寸如圖所示,單位:cm).
(I)求多面體V-ABCD的表面積;
(II)設
VE
VB
,是否存在實數λ使得平面VCD與平面EAC所成的銳角為30°?若存在,求出實數λ的值;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视