題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點P,Q,已知:
=1:2,
:
=3:2,連結AQ,BP,設它們交于點R,若
=a,
=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點分別在y軸和x軸上運動,并且滿足。
(1)求動點P的軌跡方程。
(2)若過點A的直線L與動點P的軌跡交于M、N兩點,且
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數,a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論的單調性;
(Ⅱ)設a=3,求在區間{1,
}上值域。期中e=2.71828…是自然對數的底數。
(本小題滿分14分)
已知數列{an}和{bn}滿足:a1=λ,an+1=其中λ為實數,n為正整數。
(Ⅰ)對任意實數λ,證明數列{an}不是等比數列;
(Ⅱ)試判斷數列{bn}是否為等比數列,并證明你的結論;
(Ⅲ)設0<a<b,Sn為數列{bn}的前n項和。是否存在實數λ,使得對任意正整數n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由。
(本小題滿分14分)
如圖(1),是等腰直角三角形,
,
、
分別為
、
的中點,將
沿
折起, 使
在平面
上的射影
恰為
的中點,得到圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
1.2 2.有的素數不是奇數 3.
4.0 5.
6. 7.
8.[0,2] 9.
10.-3 11.-1
12.④ 13.
14.①③
15.解:(1)因為,所以
,
即
而 ,所以
.故
。2)因為
所以 .
由得
所以
從而 故
的取值范圍是
.
16.(1)證明:因為PB^平面ABCD,MA^平面ABCD,
所以PB∥MA.
因PBÌ平面BPC,MA (/平面BPC,
所以MA∥平面BPC.同理DA∥平面BPC,
因為MAÌ平面AMD,ADÌ平面AMD,
MA∩AD=A,所以平面AMD∥平面BPC.
(2)連接AC,設AC∩BD=E,取PD中點F,
連接EF,MF.
因ABCD為正方形,所以E為BD中點.
因為F為PD中點,所以EF∥=PB.
因為AM∥=PB,所以AM∥=EF.所以AEFM為平行四邊形.所以MF∥AE.
因為PB^平面ABCD,AEÌ平面ABCD,所以PB^AE.所以MF^PB.
因為ABCD為正方形,所以AC^BD.
所以MF^BD.所以MF^平面PBD.又MFÌ平面PMD.
所以平面PMD^平面PBD.
17.解:(1) 令
則
由于,則
在
內的單調遞增區間為
和
(2)依題意, 由周期性
(3)函數為單調增函數,且當
時,
,
此時有
當時,由于
,而
,則有
,
即,即
而函數的最大值為
,且
為單調增函數,
則當時,恒有
,
綜上,在內恒有
,所以方程
在
內沒有實數解.
18.解:(1)由題意得:(100-x)? 3000 ?(1+2x%) ≥100×3000,
即x2-50x≤0,解得0≤x≤50, 又∵x>0 ∴0<x≤50;
(2)設這100萬農民的人均年收入為y元,
則y= =
即y=-[x-25(a+1)]2+3000+475(a+1)2 (0<x≤50)
(i)當0<25(a+1)≤50,即0<a≤1,當x=25(a+1)時,y最大;
(ii)當25(a+1)>50,即a >1,函數y在(0,50]單調遞增,∴當x=50時,y取最大值.
答:在0<a≤1時,安排25(a+1)萬人進入企業工作,在a>1時安排50萬人進入企業
工作,才能使這100萬人的人均年收入最大.
19.(1)解:由①知:;由③知:
,即
; ∴
(2 ) 證明:由題設知:;
由知
,得
,有
;
設,則
,
;
∴
即 ∴函數
在區間[0,1]上同時適合①②③.
(3) 證明:若,則由題設知:
,且由①知
,
∴由題設及③知:
,矛盾;
若,則則由題設知:
, 且由①知
,
∴同理得:
,
矛盾;故由上述知: .
20.解: (1) 由題設知:對定義域中的
均成立.
∴.
即 ∴
對定義域中的
均成立.
∴ 即
(舍去)或
. ∴
.
(2) 由(1)及題設知:,
設,
∴當時,
∴
.
當時,
,即
.
∴當時,
在
上是減函數.
同理當時,
在
上是增函數.
(3) 由題設知:函數的定義域為
,
∴①當時,有
. 由(1)及(2)題設知:
在
為增函數,由其值域為
知
(無解);
②當時,有
.由(1)及(2)題設知:
在
為減函數, 由其值域為
知
得
,
.
(4) 由(1)及題設知:
,
則函數的對稱軸
,
∴
.
∴函數在
上單調減.
∴
是最大實數使得
恒有
成立,
∴,即
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com