2007 2008 2009 2006 第Ⅱ卷 20080422 查看更多

 

題目列表(包括答案和解析)

某市居民2005~2009年家庭年平均收入(單位:萬元)與年平均支出(單位:萬元)的統計資料如下表所示:
年份 2005 2006 2007 2008 2009
收入x 11.5 12.1 13 13.5 15
支出Y 6.8 8.8 9.8 10 12
根據統計資料,居民家庭年平均收入的中位數是
 
,家庭年平均收入與年平均支出的回歸直線方程一定過
 
點.

查看答案和解析>>

某中學,由于不斷深化教育改革,辦學質量逐年提高.2006年至2009年高考考入一流大學人數如下:
年       份 2006 2007 2008 2009
高考上線人數 116 172 220 260
以年份為橫坐標,當年高考上線人數為縱坐標建立直角坐標系,由所給數據描點作圖(如圖所示),從圖中可清楚地看到這些點基本上分布在一條直線附近,因此,用一次函數y=ax+b來模擬高考上線人數與年份的函數關系,并以此來預測2010年高考一本上線人數.如下表:
年     份 2006 2007 2008 2009
年份代碼x 1 2 3 4
實際上線人數 116 172 220 260
模擬上線人數 y1=a+b y2=2a+b y3=3a+b y4=4a+b
為使模擬更逼近原始數據,用下列方法來確定模擬函數.
設S=(y1-y1′)2+(y2-y2′)2+(y3-y3′)2+(y4-y4′)2,y1′、y2′、y3′、y4′表示各年實際上線人數,y1、y2、y3、y4表示模擬上線人數,當S最小時,模擬函數最為理想.試根據所給數據,預測2010年高考上線人數.

查看答案和解析>>

(2012•藍山縣模擬)某公司2005~2010年的年利潤x(單位:百萬元)與年廣告支出y(單位:百萬元)的統計資料如表所示:
年份 2005 2006 2007 2008 2009 2010
利潤x 12.2 14.6 16 18 20.4 22.3
支出y 0.62 0.74 0.81 0.89 1 1.11
根據統計資料,則( 。

查看答案和解析>>

某公司2006~2011年的年利潤x(單位:百萬元)與年廣告支出y(單位:百萬元)的統計資料如表所示:
年份 2006 2007 2008 2009 2010 2011
利潤x 12.2 14.6 16 18 20.4 22.3
支出y 0.62 0.74 0.81 0.89 1 1.11
根據統計資料,則利潤中位數(  )

查看答案和解析>>

10、正整數按下列所示的規律排列,則上起2007,左起2008列的數是
4030056(即2007×2008)

查看答案和解析>>

 

第Ⅰ卷(選擇題  共60分)

一、選擇題

20080422

第Ⅱ卷(非選擇題  共90分)

二、填空題

13.2    14.3   15.   16.①③④

三、解答題

17.解:(1)由正弦定理得,…………………………………….….3分

   ,,因此!.6分

(2)的面積,………..8分

,所以由余弦定理得….10分

!.12分

文本框:  18.方法一:                

(1)證明:連結BD,

∵D分別是AC的中點,PA=PC=

∴PD⊥AC,

∵AC=2,AB=,BC=

∴AB2+BC2=AC2,

∴∠ABC=90°,即AB⊥BC.…………2分

∴BD=

∵PD2=PA2―AD2=3,PB

∴PD2+BD2=PB2

∴PD⊥BD,

∵ACBD=D

∴PD⊥平面ABC.…………………………4分

(2)解:取AB的中點E,連結DE、PE,由E為AB的中點知DE//BC,

∵AB⊥BC,

∴AB⊥DE,

∵DE是直線PE的底面ABC上的射景

∴PE⊥AB

∴∠PED是二面角P―AB―C的平面角,……………………6分

在△PED中,DE=∠=90°,

∴tan∠PDE=

∴二面角P―AB―C的大小是

(3)解:設點E到平面PBC的距離為h.

∵VP―EBC=VE―PBC,

……………………10分

在△PBC中,PB=PC=,BC=

而PD=

∴點E到平面PBC的距離為……………………12分

方法二:

(1)同方法一:

(2)解:解:取AB的中點E,連結DE、PE,

過點D作AB的平行線交BC于點F,以D為

DP為z軸,建立如圖所示的空間直角坐標系.

則D(0,0,0),P(0,0,),

E(),B=(

上平面PAB的一個法向量,

則由

這時,……………………6分

顯然,是平面ABC的一個法向量.

∴二面角P―AB―C的大小是……………………8分

(3)解:

平面PBC的一個法向量,

是平面PBC的一個法向量……………………10分

∴點E到平面PBC的距離為………………12分

19.解:

20.解(1)由已知,拋物線,焦點F的坐標為F(0,1)………………1分

l與y軸重合時,顯然符合條件,此時……………………3分

l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當且僅當直線l通過點()設l的斜率為k,則直線l的方程為

由已知可得………5分

解得無意義.

因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

(2)由已知可設直線l的方程為……………………8分

則AB所在直線為……………………9分

代入拋物線方程………………①

的中點為

代入直線l的方程得:………………10分

又∵對于①式有:

解得m>-1,

l在y軸上截距的取值范圍為(3,+)……………………12分

21.解:(1)在………………1分

兩式相減得:

整理得:……………………3分

時,,滿足上式,

(2)由(1)知

………………8分

……………………………………………12分

22.解:(1)…………………………1分

是R上的增函數,故在R上恒成立,

在R上恒成立,……………………2分

…………3分

故函數上單調遞減,在(-1,1)上單調遞增,在(1,+)上單調遞減!5分

∴當

的最小值………………6分

亦是R上的增函數。

故知a的取值范圍是……………………7分

(2)……………………8分

①當a=0時,上單調遞增;…………10分

可知

②當

即函數上單調遞增;………………12分

③當時,有,

即函數上單調遞增!14分

 


同步練習冊答案
久久精品免费一区二区视