(1)求證數列是等比數列, 查看更多

 

題目列表(包括答案和解析)

等比數列{xn}各項均為正值,yn=2logaxn(a>0且a≠1,n∈N*),已知y4=17,y7=11
(1)求證:數列{yn}是等差數列;
(2)數列{yn}的前多少項的和為最大?最大值是多少?
(3)求數列{|yn|}的前n項和.

查看答案和解析>>

等比數列{cn}滿足cn+1+cn=5•22n-1,n∈N*,數列{an}滿足an=log2cn
(Ⅰ)求{an}的通項公式;
(Ⅱ)數列{bn}滿足bn=
1
anan+1
,Tn為數列{bn}的前n項和.求證:Tn
1
2

(Ⅲ)是否存在正整數m,n(1<m<n),使得T1,Tm,Tn成等比數列?若存在,求出所有m,n 的值;若不存在,請說明理由.

查看答案和解析>>

等比數列{xn}各項均為正值,yn=2logaxn(a>0且a≠1,n∈N*),已知y4=17,y7=11.
(1)求證:數列{yn}是等差數列;
(2)數列{yn}的前多少項的和為最大?最大值為多少?
(3)當n>12時,要使xn>2恒成立,求a的取值范圍.

查看答案和解析>>

等比數列{an}的公比為q,作數列{bn}使bn=,

(1)求證數列{bn}也是等比數列;

(2)已知q>1,a1=,問n為何值時,數列{an}的前n項和Sn大于數列{bn}的前n項和Sn′.

查看答案和解析>>

等比數列中,分別是下表第一、二、三行中的某一個數,且中的任何兩個數不在下表的同一列.

第一列

第二列

第三列

第一行

3

2

10

第二行

6

4

14

第三行

9

8

18

(Ⅰ)求數列的通項公式;   

(Ⅱ)若數列滿足 ,記數列的前n項和為,證明

查看答案和解析>>

一.1-5  ACDAD   6-10  DBDAB  11-12  BA

13. 28   14.       15. 1      16.  ⑴⑵⑷

17. 解:(1)∵高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。,……………………………………………(2分)

高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。

高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。……………(3分)

∴當高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。)時,高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。

最小正周期為高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。……………………………………………(5分)

(2)∵高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。

高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。……………………………………………(8分)

高考資源網(ks5u.com),中國最大的高考網站,您身邊的高考專家。…………(10分)

18.解法一:證明:連結OC,

.   ----------------------------------------------------------------------------------1分

,,

       ∴ .                ------------------------------------------------------2分

中,     

   ------------------3分

             

.  ----------------------------4分

       (II)過O作,連結AE,

       ,

∴AE在平面BCD上的射影為OE.

.  -----------------------------------------7分

中,,,,   

       ∴.∴二面角A-BC-D的大小為.   -------8分

       (III)解:設點O到平面ACD的距離為

,

 ∴

中, ,

            

,∴

         ∴點O到平面ACD的距離為.-----------------------------------------------------12分

        解法二:(I)同解法一.(II)解:以O為原點,如圖建立空間直角坐標系,

則     

      

.  ------------6分

設平面ABC的法向量,

,

夾角為,則

∴二面角A-BC-D的大小為. --------------------8分

       (III)解:設平面ACD的法向量為,又,

       .   -----------------------------------11分

夾角為,

   則     -       設O 到平面ACD的距離為h,

,∴O到平面ACD的距離為.  ---------------------12分

19.解:(Ⅰ)記“廠家任取4件產品檢驗,其中至少有1件是合格品”為事件A

   用對立事件A來算,有………3分

(Ⅱ)可能的取值為

        ,………

 

 

 

 

………………9分

記“商家任取2件產品檢驗,都合格”為事件B,則商家拒收這批產品的概率

    所以商家拒收這批產品的概率為………………….12分

20. (1)當   (1分)

   

為首項,2為公比的等比例數列。(6分)

   (2)得 (7分)

  

      

。(11分)

        12分

21解(I)設

      

(Ⅱ)(1)當直線的斜率不存在時,方程為

      

       …………(4分)

  (2)當直線的斜率存在時,設直線的方程為,

       設,

      ,得

       …………(6分)

      

      

…………………8分

注意也可用..........12分

22. 解:(1)因為     所以

依題意可得,對恒成立,

所以   對恒成立,

所以   對恒成立,,即

(2)當時,,,單調遞減;

單調遞增;

處取得極小值,即最小值

所以要使直線與函數的圖象在上有兩個不同交點,

實數的取值范圍應為,即(;

(3)當時,由可知,上為增函數,

時,令,則,故

所以。

相加可得

又因為

所以對大于1的任意正整書

 

 

 

 


同步練習冊答案
久久精品免费一区二区视