題目列表(包括答案和解析)
(本小題滿分13分) 已知二項式
(1)求其展開式中第四項的二項式系數;
(2)求其展開式中第四項的系數 。
(本小題滿分13分)某廠用甲、乙兩種產品,已知生產1噸A產品,1噸B產品分別需要的甲乙原料數、可獲得的利潤及該廠現有原料數如表:
產品 所需原料 | A產品(t) | B產品(t) | 現有原料(t) |
甲(t) | 2 | 1 | 14 |
乙(t) | 1 | 3 | 18 |
利潤(萬元) | 5 | 3 |
|
(1)在現有原料下,A、B產品應各生產多少才能使利潤最大?
(2)如果1噸B產品的利潤增加到20萬元,原來的最優解為何改變?
(3)如果1噸B產品的利潤減少1萬元,原來的最優解為何改變?
(4)1噸B產品的利潤在什么范圍,原最優解才不會改變?
(本小題滿分13分)
某市物價局調查了某種治療H1N1流感的常規藥品在2009年每個月的批發價格和該藥品在藥店的銷售價格,調查發現,該藥品的批發價格按月份以12元/盒為中心價隨某一正弦曲線上下波動,且3月份的批發價格最高為14元/盒,7月份的批發價格最低為10元/盒.該藥品在藥店的銷售價格按月份以14元/盒為中心價隨另一正弦曲線上下波動,且5月份的銷售價格最高為16元/盒,9月份的銷售價格最低為12元/盒.
(Ⅰ)求該藥品每盒的批發價格f(x)和銷售價格g(x)關于月份的函數解析式;
(Ⅱ)假設某藥店每月初都購進這種藥品p 盒,且當月售完,求該藥店在2009年哪些月份是盈利的?說明你的理由.
(本小題滿分13分) 根據長沙市建設大河西的規劃,市旅游局擬在咸嘉湖建立西湖生態文化公園. 如圖,設計方案中利用湖中半島上建一條長為的觀光帶AB,同時建一條連接觀光帶和湖岸的長為2
的觀光游廊BC,且BC與湖岸MN(湖岸可看作是直線)的夾角為60°,BA與BC的夾角為150°,并在湖岸上的D處建一個觀光亭,設CD=xkm(1<x<4).
(Ⅰ)用x分別表示tan∠BDC和tan∠ADM;
(Ⅱ)試確定觀光亭D的位置,使得在觀光亭D處觀賞
觀光帶AB的視覺效果最佳.
(本小題滿分13分)
已知橢圓的焦點為F1(-4,0),F2(4,0),過點F2且垂直于軸的直線與橢圓的一個交點為B,且|BF1|+|BF2|=10,設點A,C為橢圓上不同兩點,使得|AF2|,|BF2|,|CF2|成等差數列.
(Ⅰ) 求橢圓的標準方程;
(Ⅱ) 求線段AC的中點的橫坐標;
(Ⅲ)求線段AC的垂直平分線在y軸上的截距的取值范圍.
1
11. . 12.
13.
14. 60 15. ①③
16.解:(Ⅰ)∵-
∴,(3分)
∴
又已知點為
的圖像的一個對稱中心!
而 (6分)
(Ⅱ)若,
(9分)
∵,∴
即m的取值范圍是 (12分)
17. 解:(1)由已知得,∵
,∴
∵、
是方程
的兩個根,∴
∴,
………………6分
(2)的可能取值為0,100,200,300,400
,
,
,
,
即
的分布列為:
故………12分
18解法一:
(1)延長C
所以F為C1N的中點,B為CN的中點。????2分
又M是線段AC1的中點,故MF∥AN。?????3分
又MF平面ABCD,AN
平面ABCD。
∴MF∥平面ABCD。 ???5分
(2)證明:連BD,由直四棱柱ABCD―A1B
可知A平面ABCD,
∴A
又∵AC∩A平面ACC
∴BD⊥平面ACC
在四邊形DANB中,DA∥BN且DA=BN,所以四邊形DANB為平行四邊形
故NA∥BD,∴NA⊥平面ACC平面AFC1
∴平面AFC1⊥ACC
(3)由(2)知BD⊥ACCACC
又由BD⊥AC可知NA⊥AC,
∴∠C
在Rt△C,故∠C
∴平面AFC1與平面ABCD所成二面角的大小為30°或150°。???12分
19.解:(Ⅰ)因為成等差數列,點
的坐標分別為
所以
且
由橢圓的定義可知點的軌跡是以
為焦點長軸為4的橢圓(去掉長軸的端點),
所以.故頂點
的軌跡
方程為
.…………4分
(Ⅱ)由題意可知直線的斜率存在,設直線
方程為
.
由得
,
設兩點坐標分別為
,則
,
,所以線段CD中點E的坐標為
,故CD垂直平分線l的方程為
,令y=0,得
與
軸交點的橫坐標為
,由
得
,解得
,
又因為,所以
.當
時,有
,此時函數
遞減,所以
.所以,
.
故直線與
軸交點的橫坐標的范圍是
.
………………12分
20.解:(1)因為
所以設S=(1)
S=……….(2)(1)+(2)得:
=
, 所以S=3012
(2)由兩邊同減去1,得
所以,
所以,
是以2為公差以
為首項的等差數列,
所以
(3)因為
所以
所以
>
21.解:(1)∵ ∴
…1分
設
則
……2分
∴在
上為減函數 又
時,
,
∴ ∴
在
上是減函數………4分(2)①
∵ ∴
或
時
∴
…………………………………6分
又≤
≤
對一切
恒成立 ∴
≤
≤
……………8分
②顯然當或
時,不等式成立
…………………………9分
當,原不等式等價于
≥
………10分
下面證明一個更強的不等式:≥
…①
即≥
……②亦即
≥
…………………………11分
由(1) 知在
上是減函數 又
∴
……12分
∴不等式②成立,從而①成立 又
∴>
綜合上面∴≤
≤
且
≤
≤
時,原不等式成立 ……………………………14分
本資料由《七彩教育網》www.7caiedu.cn 提供!
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com