題目列表(包括答案和解析)
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
3 |
(07年福建卷理)(本小題滿分12分)在中,
,
.
(Ⅰ)求角的大。
(Ⅱ)若最大邊的邊長為
,求最小邊的邊長.
(07年福建卷文)(本小題滿分12分)
設函數f(x)=tx2+2t2x+t-1(x∈R,t>0).
(I)求f (x)的最小值h(t);
(II)若h(t)<-2t+m對t∈(0,2)恒成立,求實數m的取值范圍.
(07年福建卷文)(本小題滿分12分)
如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(I)求證:AB1⊥平面A1BD;
(II)求二面角A-A1D-B的大小.
一、選擇題(每小題5分,共60分)
BDACC ACDDB AA
二、填空題(每小題4分,共16分)
13.; 14.
15.―192 16.
三、解答題(共74分)
17.解:(I)由正弦定理,有
代入得
即
(Ⅱ)
由得
所以,當時,
取得最小值為0
18.解:(I)由已知得
故
即
故數列為等比數列,且
由當時,
所以
(Ⅱ)
所以
19.解:(I)從50名教師隨機選出2名的方法為=1225,選出2人使用教材版本相同的方法數
故2人使用版本相同的概率為。
(Ⅱ)
的分布為
0
1
2
20.解(I)由該四棱錐的三視圖可知,該四棱錐的底面是邊長為1的正方形,
側棱底面
,且
,
(Ⅱ)不論點E在何位置,都有
證明:連結是正方形,
底面
,且
平面
,
又平面
不論點
在何位置,都有
平面
不論點E在何位置,都有
。
(Ⅲ)以為坐標原點,
所在的直線為
軸建立空間直角坐標系如圖:
則從而
設平面和平面
的法向量分別為
,
由法向量的性質可得:
令則
設二面角的平面角為
,則
二面角
的大小為
。
21.解:(1)由題意可知直線的方程為
,
因為直線與圓相切,所以
,即
從而
(2)設,則
,
又
(
①當時,
,解得
,
此時橢圓方程為
②當時,
,解得
,
當,故舍去
綜上所述,橢圓的方程為
22.解:(I)依題意,知的定義域為(0,+
)
當時,
令,解得
。
當時,
;當
時,
又所以
的極小值為2-2
,無極大值。
(Ⅱ);
令,解得
。
(1)若令
,得
令
,得
(2)若,
①當時,
,
令,得
或
;
令,得
②當時,
③當時,得
,
令,得
或
令,得
綜上所述,當時,
的遞減區間為
,遞增區間為
當時,
的遞減區間為
;遞增區間為
當時,
遞減區間為
當時,
的遞減區間為
,遞增區間為
(Ⅲ)當時,
,
由,知
時,
依題意得:對一切正整數成立
令,則
(當且僅當
時取等號)
又在區間
單調遞增,得
,
故又
為正整數,得
當時,存在
,對所有
滿足條件。
所以,正整數的最大值為32。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com