題目列表(包括答案和解析)
已知函數.(
)
(1)若在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)在區間
上單調遞增,
則在區間
上恒成立. …………3分
即,而當
時,
,故
.
…………5分
所以.
…………6分
(2)令,定義域為
.
在區間上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵ …………9分
① 若,令
,得極值點
,
,
當,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當,即
時,同理可知,
在區間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使在此區間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當時,函數
的圖象恒在直線
下方.
給定函數f(x):對任意m∈Z,當x∈(2m-1,2m]時,f(x)=2m-x.給出如下結論:①函數f(x)的定義域為(0,+∞);②函數f(x)的值域為[0,+∞);③方程f(x)-kx=0有解的充要條件是k∈(0,1);④“函數f(x)在區間(a,b)上單調遞減”的充要條件是“存在k∈Z,使得(a,b)(2k,2k+1)”.⑤當x∈(0,+∞)時,恒有f(2x)=2f(x)成立;⑥若數列{an}滿足:an=f(2n+1),則數列{an}的前n項和為Sn=2n+1-n-2.其中正確結論的序號是________.(寫出所有正確結論的序號)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com