解析:=1時進入循環此時=21=2.=2時再進入循環此時=22=4.=3時再進入循環此時=24=16.∴=4時應跳出循環.∴循環滿足的條件為.∴填3. 查看更多

 

題目列表(包括答案和解析)

已知定義在區間[-π,
2
]
上的函數y=f(x)圖象關于直線x=
π
4
對稱,當x≥
π
4
時,f(x)=-sinx.
(1)作出y=f(x)的圖象;
(2)求y=f(x)的解析式;
(3)當a∈[-1,1]時,討論關于x的方程f(x)=a的解的個數.

查看答案和解析>>

(2012•黔東南州一模)已知函數f(x)=x3+mx2+nx+m-1,當x=-1時取得極值,且函數y=f(x)在點(1,f(1))處的切線的斜率為4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)O是坐標原點,A點是x軸上橫坐標為2的點,B點是曲線y=f(x)(0<x≤
45
)
上但不在x軸上的動點,求△AOB面積的最大值.

查看答案和解析>>

已知奇函數y=f(x)在定義域(-1,1)上是減函數,當0<x<1時f(x)=-x3-x2
①求函數f(x)的解析式;
②若有f(1-a)+f(1-2a)<0,求a的取值范圍.

查看答案和解析>>

已知三次函數f(x)=ax3+bx2+cx(a,b,c∈R).
(Ⅰ)若函數f(x)過點(-1,2)且在點(1,f(1))處的切線方程為y+2=0,求函數f(x)的解析式;
(Ⅱ)在(Ⅰ)的條件下,若對于區間[-3,2]上任意兩個自變量的值x1,x2都有|f(x1)-f(x2)|≤t,求實數t的最小值;
(Ⅲ)當-1≤x≤1時,|f′(x)|≤1,試求a的最大值,并求a取得最大值時f(x)的表達式.

查看答案和解析>>

已知函數f(x)=x3-3ax(a∈R),函數g(x)=lnx.
(1)當a=1時,求函數f(x)在區間[-2,2]上的最小值;
(2)若在區間[1,2]上f(x)的圖象恒在g(x)的圖象的上方(沒有公共點),求實數a的取值范圍;
(3)當a>0時,設h(x)=|f(x)|,x∈[-1,1].求h(x)的最大值F(a)的解析式.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视