①②數值關系:xC?xD=-yH.(1)請你驗證結論①和結論②成立,(2)請你研究:如果將上述的條件“A點坐標為(1.0) 改為“A點坐標為(t.0).t>0 .其他條件不變.結論①是否仍成立? 查看更多

 

題目列表(包括答案和解析)

如圖,在直角坐標平面內,O為坐標原點,A點的坐標為(1,0),B點在x軸上且在點A的右側,AB=OA,過點A和B作x軸的垂線分別交二次函數y=x2的圖象于點C和D,直線OC交BD于M,直線CD交y軸于點H。記C、D的橫坐標分別為xC,xD,點H的縱坐標yH

(1)證明:①S△CMD∶S梯形ABMC=2∶3
②xC·xD=-yH
(2)若將上述A點坐標(1,0)改為A點坐標(t,0),t>0,其他條件不變,結論S△CMD:S梯形ABMC=2∶3是否仍成立?請說明理由。
(3)若A的坐標(t,0)(t>0),又將條件y=x2改為y=ax2(a>0),其他條件不變,那么XC、XD和yH又有怎樣的數量關系?寫出關系式,并證明。

查看答案和解析>>

如圖,在直角坐標平面內,O為坐標原點,A點的坐標為(1,0),B點在x軸上且在點A的右側,AB=OA,過點A和B作x軸的垂線分別交二次函數y=x2的圖象于點C和D,直線OC交BD于M,直線CD交y軸于點H。記C、D的橫坐標分別為xC,xD,點H的縱坐標yH。

(1)證明:①S△CMD∶S梯形ABMC=2∶3

②xC·xD=-yH

(2)若將上述A點坐標(1,0)改為A點坐標(t,0),t>0,其他條件不變,結論S△CMD:S梯形ABMC=2∶3是否仍成立?請說明理由。

(3)若A的坐標(t,0)(t>0),又將條件y=x2改為y=ax2(a>0),其他條件不變,那么XC、XD和yH又有怎樣的數量關系?寫出關系式,并證明。

 

查看答案和解析>>

如圖,在直角坐標平面內,O為坐標原點,A點的坐標為(1,0),B點在x軸上且在點A的右側,AB=OA,過點A和B作x軸的垂線分別交二次函數y=x2的圖象于點C和D,直線OC交BD于M,直線CD交y軸于點H。記C、D的橫坐標分別為xC,xD,點H的縱坐標yH

(1)證明:①S△CMD∶S梯形ABMC=2∶3
②xC·xD=-yH
(2)若將上述A點坐標(1,0)改為A點坐標(t,0),t>0,其他條件不變,結論S△CMD:S梯形ABMC=2∶3是否仍成立?請說明理由。
(3)若A的坐標(t,0)(t>0),又將條件y=x2改為y=ax2(a>0),其他條件不變,那么XC、XD和yH又有怎樣的數量關系?寫出關系式,并證明。

查看答案和解析>>

如圖,在直角坐標平面內,O為坐標原點,A點的坐標為(1,0),B點在x軸上且在點A的右側,AB=OA,過點A和B作x軸的垂線分別交二次函數y=x2的圖象于點C和D,直線OC交BD于M,直線CD交y軸于點H。記C、D的橫坐標分別為xC,xD,點H的縱坐標yH。

(1)證明:①S△CMD∶S梯形ABMC=2∶3

②xC·xD=-yH

(2)若將上述A點坐標(1,0)改為A點坐標(t,0),t>0,其他條件不變,結論S△CMD:S梯形ABMC=2∶3是否仍成立?請說明理由。

(3)若A的坐標(t,0)(t>0),又將條件y=x2改為y=ax2(a>0),其他條件不變,那么XC、XD和yH又有怎樣的數量關系?寫出關系式,并證明。

查看答案和解析>>

如圖,在直角坐標平面內,O為坐標原點,A點的坐標為(1,0),B點在x軸上且在點A的右側,AB=OA,過點A和B作x軸的垂線分別交二次函數y=x2的圖象于點C和D,直線OC交BD于M,直線CD交y軸于點H。記C、D的橫坐標分別為xC,xD,點H的縱坐標yH。

(1)證明:①S△CMD∶S梯形ABMC=2∶3

②xC·xD=-yH

(2)若將上述A點坐標(1,0)改為A點坐標(t,0),t>0,其他條件不變,結論S△CMD:S梯形ABMC=2∶3是否仍成立?請說明理由。

(3)若A的坐標(t,0)(t>0),又將條件y=x2改為y=ax2(a>0),其他條件不變,那么XC、XD和yH又有怎樣的數量關系?寫出關系式,并證明。

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视