題目列表(包括答案和解析)
九(1)班數學課題學習小組,為了研究學習二次函數問題,他們經歷了實踐一應用——探究的過程:
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m.隧道頂部最高處距地面6.25m,并畫出了隧道截面圖.建立了如圖②所示的直角坐標系.請你求出拋物線的解析式.
(2)應用:按規定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全.問該隧道能否讓最寬3m.最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型塑.提出了以下兩個問題,請予解答:
Ⅰ.如圖③,在拋物線內作矩形ABCD,使頂點C、D落在拋物線上.頂點A、B落在x軸上.設矩形ABCD的周長為,求
的最大值。
Ⅱ.如圖④,過原點作一條的直線OM,交拋物線于點M.交拋物線對稱軸于點N,P為直線OM上一動點,過P點作x軸的垂線交拋物線于點Q。問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.
已知直線y=kx+3(k<0)分別交x軸、y軸于A、B兩點,線段OA上有一動點P由原來O向點A運動,速度為每秒1個單位長度,過點P作x軸的垂線交直線AB于點C,設
運動時間為t秒。
(1)當k=-1時,線段OA上另有一動點Q由點A向點O運動,它與點P以相同速度同時出發,當點P到達點A時兩點同時停止運動(如圖1).
①直接寫出t=1秒時C、Q兩點的坐標;
②若以Q、C、A為頂點的三角形與△AOB相似,求t的值.
(2)當時,設以C為頂點的拋物線y=(x+m)2+n與直線AB的另一交點為D(如圖2)。
①求CD的長;
②設△COD的OC邊上的高為h,當t為何值時,h的值最大?
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com