題目列表(包括答案和解析)
(本題滿分12分)
已知點C為線段AB上一點, 分別以AC、BC為邊在線段AB同側作△ACD和△BCE, 且CA=CD, CB=CE, ∠ACD=∠BCE, 直線AE與BD交于點F.
(1)如圖1,求證:△ACE≌△DCB。
(2)如圖1, 若∠ACD=60°, 則∠AFB= ;
如圖2, 若∠ACD=90°, 則∠AFB= ;
(3)如圖3, 若∠ACD=β, 則∠AFB= (用含β的式子表示)
并說明理由。
(本題滿分12分)
已知點C為線段AB上一點, 分別以AC、BC為邊在線段AB同側作△ACD和△BCE, 且CA=CD, CB=CE, ∠ACD=∠BCE, 直線AE與BD交于點F.
(1)如圖1,求證:△ACE≌△DCB。
(2)如圖1, 若∠ACD=60°, 則∠AFB= ;
如圖2, 若∠ACD=90°, 則∠AFB= ;
(3)如圖3, 若∠ACD=β, 則∠AFB= (用含β的式子表示)
并說明理由。
(本小題滿分12分)
如圖,在平面直角坐標系中,頂點為(,
)的拋物線交
軸于
點,交
軸于
,
兩點(點
在點
的左側), 已知
點坐標為(
,
)。
(1)求此拋物線的解析式;
(2)過點作線段
的垂線交拋物線于點
, 如果以點
為圓心的圓與直線
相切,請判斷拋物線的對稱軸
與⊙
有怎樣的位置關系,并給出證明;
(3)已知點
是拋物線上的一個動點,且位于
,
兩點之間,問:當點
運動到什么位置時,
的面積最大?并求出此時
點的坐標和
的最大面積.
(本小題滿分12分)如圖15,在平面直角坐標系中,點P從原點O出發,沿x軸
向右以每秒1個單位長的速度運動t(t>0)秒,拋物線y=x2+bx+c經過點O和點P.已知
矩形ABCD的三個頂點為A(1,0)、B(1,-5)、D(4,0).
⑴求c、b(用含t的代數式表示);
⑵當4<t<5時,設拋物線分別與線段AB、CD交于點M、N.
①在點P的運動過程中,你認為∠AMP的大小是否會變化?若變化,說明理由;若不變,求出∠AMP的值;
②求△MPN的面積S與t的函數關系式,并求t為何值時,S=;
③在矩形ABCD的內部(不含邊界),把橫、縱坐標都是整數的點稱為“好點”.若拋物線將這些“好點”分成數量相等的兩部分,請直接寫出t的取值范圍.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com