[解析]畫出可行域,利用角點法可得答案70. 查看更多

 

題目列表(包括答案和解析)

已知實數x,y滿足約束條件:
2x-y-1≥0
x-y+1≤0
x+y-7≤0

(Ⅰ)請畫出可行域,并求z=
y
x-1
的最小值;
(Ⅱ)若z=x+ay取最小值的最優解有無窮多個,求實數a的值.

查看答案和解析>>

滿足約束條件:的可行域為

1)在所給的坐標系中畫出可行域(用陰影表示,并注明邊界的交點或直線);

2)求的最大值與的最小值;

3)若存在正實數,使函數的圖象經過區域中的點,

求這時的取值范圍.

 

查看答案和解析>>

 某農場預算用5600元購買單價為50元(每噸)的鉀肥和20元(每噸)的氮肥,希望使兩種肥料的總數量(噸)盡可能的多,但氮肥噸數不少于鉀肥噸數,且不多于鉀肥噸數的1.5倍.

(1)   設買鉀肥噸,買氮肥噸,按題意列出約束條件、畫出可行域,并求鉀肥、氮肥各買多少才行?

(2)   設點在(1)中的可行域內,求的取值范圍;   

(3)   已知,O是原點, 在(1)中的可行域內,求的取值范圍.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

如圖,直線與拋物線交于兩點,與軸相交于點,且.

(1)求證:點的坐標為;

(2)求證:;

(3)求的面積的最小值.

【解析】設出點M的坐標,并把過點M的方程設出來.為避免對斜率不存在的情況進行討論,可以設其方程為,然后與拋物線方程聯立消x,根據,即可建立關于的方程.求出的值.

(2)在第(1)問的基礎上,證明:即可.

(3)先建立面積S關于m的函數關系式,根據建立即可,然后再考慮利用函數求最值的方法求最值.

 

查看答案和解析>>

已知曲線相交于點A,

(1)求A點坐標;

(2)分別求它們在A點處的切線方程(寫成直線的一般式方程);

(3)求由曲線在A點處的切線及以及軸所圍成的圖形面積。(畫出草圖)

【解析】本試題主要考察了導數的幾何意義的運用,以及利用定積分求解曲邊梯形的面積的綜合試題。先確定切點,然后求解斜率,最后得到切線方程。而求解面積,要先求解交點,確定上限和下限,然后借助于微積分基本定理得到。

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视