25.問題一:通過驗證可知.下列各式都是成立的. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)如圖9,在直角坐標系xoy中,O是坐標原點,點A在x正半軸上,OA=cm,點B在y軸的正半軸上,OB=12cm,動點P從點O開始沿OA以cm/s的速度向點A移動,動點Q從點A開始沿AB以4cm/s的速度向點B移動,動點R從點B開始沿BO以2cm/s的速度向點O移動.如果P、Q、R分別從O、A、B同時移動,移動時間為t(0<t<6)s.

(1)求∠OAB的度數.
(2)以OB為直徑的⊙O‘與AB交于點M,當t為何值時,PM與⊙O‘相切?
(3)寫出△PQR的面積S隨動點移動時間t的函數關系式,并求s的最小值及相應的t值.
(4)是否存在△APQ為等腰三角形,若存在,求出相應的t值,若不存在請說明理由.

查看答案和解析>>

(2011廣西崇左,24,14分)(本小題滿分14分)如圖,在邊長為8的正方形ABCD

中,點OAD上一動點(4<OA<8),以O為圓心,OA的長為半徑的圓交邊CD于點M,連接OM,過點M作圓O的切線交邊BC于點N.

(1)       求證:△ODM∽△MCN;[來源:學+科+網]

(2)       設DM=x,求OA的長(用含x的代數式表示);

(3)       在點O運動的過程中,設△CMN的周長為p,試用含x的代數式表示p,你能發現怎樣的結論?

 

查看答案和解析>>

(本小題滿分14分)如圖9,在直角坐標系xoy中,O是坐標原點,點A在x正半軸上,OA=cm,點B在y軸的正半軸上,OB=12cm,動點P從點O開始沿OA以cm/s的速度向點A移動,動點Q從點A開始沿AB以4cm/s的速度向點B移動,動點R從點B開始沿BO以2cm/s的速度向點O移動.如果P、Q、R分別從O、A、B同時移動,移動時間為t(0<t<6)s.

(1)求∠OAB的度數.

(2)以OB為直徑的⊙O‘與AB交于點M,當t為何值時,PM與⊙O‘相切?

(3)寫出△PQR的面積S隨動點移動時間t的函數關系式,并求s的最小值及相應的t值.

(4)是否存在△APQ為等腰三角形,若存在,求出相應的t值,若不存在請說明理由.

 

查看答案和解析>>

(本小題滿分14分)
如圖1,拋物線y軸交于點A,E(0,b)為y軸上一動點,過點E的直線與拋物線交于點B、C.
 
【小題1】(1)求點A的坐標;
【小題2】(2)當b=0時(如圖2),求的面積。
【小題3】(3)當時,的面積大小關系如何?為什么?
【小題4】(4)是否存在這樣的b,使得是以BC為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.

查看答案和解析>>

(2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數)

經過點(0,4).

(1)       求m的值;

(2)       將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個條件:它的對稱軸(設為直線l2)與平移前的拋物線的對稱軸(設為直線l1)關于y軸對稱;它所對應的函數的最小值為-8.

① 試求平移后的拋物線的解析式;

② 試問在平移后的拋物線上是否存在點P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點P的坐標,并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视