答案:四:1 (1)-3 (2) 2(1) (2) 3 (2) 查看更多

 

題目列表(包括答案和解析)

對于某些正整數n,存在A1,A2,…,An為集合{1,2,……,n}的n個不同子集,滿足下列條件:對任意不大于n的正整數i,j,①且每個Ai至少含有四個元素;②i∈Aj的充要條件是(其中i≠j).為了表示這些子集,作n行n列的數表,規定第i行第j列的數為

(1)求該數表中每列至多有多少個-1.

(2)用n表示該數表中1的個數,并證明n≥9

(3)請構造出集合{1,2,……,9}的9個不同子集A1,A2,…A9,使得A1,A2,…A9,滿足題設(寫出一種答案即可).

查看答案和解析>>

定義{a,b,c}為函數y=ax2+bx+c的“特征數”.如:函數y=x2-2x+3的“特征數”是{1,-2,3},函數y=2x+3的“特征數”是{0,2,3,},函數y=-x的“特征數”是{0,-1,0}
(1)將“特征數”是{0,
3
3
,1
}的函數圖象向下平移2個單位,得到的新函數的解析式是
y=
3
3
x-1
y=
3
3
x-1
; (答案寫在答卷上)
(2)在(1)中,平移前后的兩個函數分別與y軸交于A、B兩點,與直線x=
3
分別交于D、C兩點,在平面直角坐標系中畫出圖形,判斷以點A、B、C、D為頂點的四邊形形狀,并說明理由;
(3)若(2)中的四邊形與“特征數”是{1,-2b,b2+
1
2
}的函數圖象的有交點,求滿足條件的實數b的取值范圍.

查看答案和解析>>

定義{a,b,c}為函數y=ax2+bx+c的“特征數”.如:函數y=x2-2x+3的“特征數”是{1,-2,3},函數y=2x+3的“特征數”是{0,2,3,},函數y=-x的“特征數”是{0,-1,0}
(1)將“特征數”是{數學公式}的函數圖象向下平移2個單位,得到的新函數的解析式是________; (答案寫在答卷上)
(2)在(1)中,平移前后的兩個函數分別與y軸交于A、B兩點,與直線x=數學公式分別交于D、C兩點,在平面直角坐標系中畫出圖形,判斷以點A、B、C、D為頂點的四邊形形狀,并說明理由;
(3)若(2)中的四邊形與“特征數”是{數學公式}的函數圖象的有交點,求滿足條件的實數b的取值范圍.

查看答案和解析>>

請按照題號在各題的答題區域(黑色線框)內作答,超出答題區域書寫的答案無效。

參考公式:

樣本數據,的標準差

         其中為樣本平均數

柱體體積公式

   

其中為底面面積,為高

 

錐體體積公式

   

其中為底面面積,為高

球的表面積和體積公式

,

其中為球的半徑

 
 


第Ⅰ卷

一、選擇題:本大題共12小題,每小題5分,滿分60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

1.已知函數的定義域為,的定義域為,則

                空集

2.已知復數,則它的共軛復數等于

                                  

3.設變量、滿足線性約束條件,則目標函數的最小值為

6               7              8                  23

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區域內.
A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E,求線段AE的長.
B.(選修4-2:矩陣與變換)
已知二階矩陣A有特征值λ1=3及其對應的一個特征向量α1=
1
1
,特征值λ2=-1及其對應的一個特征向量α2=
1
-1
,求矩陣A的逆矩陣A-1
C.(選修4-4:坐標系與參數方程)
以平面直角坐標系的原點O為極點,x軸的正半軸為極軸,建立極坐標系(兩種坐標系中取相同的單位長度),已知點A的直角坐標為(-2,6),點B的極坐標為(4,
π
2
)
,直線l過點A且傾斜角為
π
4
,圓C以點B為圓心,4為半徑,試求直線l的參數方程和圓C的極坐標方程.
D.(選修4-5:不等式選講)
設a,b,c,d都是正數,且x=
a2+b2
,y=
c2+d2
.求證:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视