奧地利數學家皮克發現了一個計算正方形網格紙中多邊形面積的公式:
S=a+
b-1,方格紙中每個小正方形的邊長為1,其中a表示多邊形內部的格點數,b表示多邊形邊界上的格點數,S表示多邊形的面積.
注:①由n條線段依次首尾連接而成的封閉圖形叫做n邊形,這些線段的端點叫做頂點;
②網格中小正方形的頂點叫格點.
如:在圖①中,點A、B、C、D都正好在格點上,那么四邊形ABCD的面積S=8+
×4-1=9.
運用上述知識回答:

(1)如圖②中,求四邊形ABCD的面積;
(2)如圖③、④、⑤,若多邊形的頂點都在格點上,且面積為6,請畫出這樣三個形狀不同的多邊形(多邊形的邊數≥6).并寫出相應的a、b的值.
a=
3
3
; a=
1
1
; a=
3
3
;
b=
8
8
.b=
12
12
.b=
8
8
.