24. 在一次數學探究性學習活動中.某學習小組要制作一個圓錐體模型.操作規則是:在一塊邊長為16cm的正方形紙片上剪出一個扇形和一個圓.使得扇形圍成圓錐的側面時.圓恰好是該圓錐的底面.他們首先設計了如圖所示的方案一.發現這種方案不可行.于是他們調整了扇形和圓的半徑.設計了如圖所示的方案二(兩個方案的圖中.圓與正方形相鄰兩邊及扇形的弧均相切.方案一中扇形的弧與正方形的兩邊相切)(1)請說明方案一不可行的理由,(2)判斷方案二是否可行?若可行.請確定圓錐的母線長及其底面圓半徑,若不可行.請說明理由. 查看更多

 

題目列表(包括答案和解析)

在一次數學探究性學習活動中,某學習小組要制作一個圓錐體模型,操作規則是:在一塊邊長為16cm的正方形紙片上剪出一個扇形和一個圓,使得扇形圍成圓錐的側面時,圓恰好是該圓錐的底面.他們首先設計了如圖所示的方案一,發現這種方案不可行,于是他們調整了扇形和圓的半徑,設計了如圖所示的方案二.(兩個方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切.方案一中扇形的弧與正方形的兩邊相切)
(1)請說明方案一不可行的理由;
(2)判斷方案二是否可行?若可行,請確定圓錐的母線長及其底面圓半徑;若不可行,請說明理由.

查看答案和解析>>

在一次數學探究性學習活動中,某學習小組要制作一個圓錐體模型,操作規則是:在一塊邊長為16cm的正方形紙片上剪出一個扇形和一個圓,使得扇形圍成圓錐的側面時,圓恰好是該圓錐的底面.他們首先設計了如圖所示的方案一,發現這種方案不可行,于是他們調整了扇形和圓的半徑,設計了如圖所示的方案二.(兩個方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切.方案一中扇形的弧與正方形的兩邊相切)

(1)請說明方案一不可行的理由;

(2)判斷方案二是否可行?若可行,請確定圓錐的母線長及其底面圓半徑;若不可行,請說明理由.

 

查看答案和解析>>

在一次數學探究性學習活動中, 某學習小組要制作一個圓錐體模型, 操作規則是: 在一塊邊長為16cm的正方形紙片上剪出一個扇形和一個圓,使得扇形圍成圓錐的側面時,圓恰好是該圓錐的底面。他們首先設計了如圖所示的方案一,發現這種方案不可行,于是他們調整了扇形和圓的半徑,設計了如圖所示的方案二。(兩個方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切。方案一中扇形的弧與正方形的兩邊相切)

(1)請說明方案一不可行的理由。

(2)判斷方案二是否可行?若可行,請確定圓錐的母線長及其底面圓半徑;若不可行,請說明理由。

查看答案和解析>>

在一次數學探究性學習活動中,某學習小組要制作一個圓錐體模型,操作規則是:在一塊邊長為16cm的正方形紙片上剪出一個扇形和一個圓,使得扇形圍成圓錐的側面時,圓恰好是該圓錐的底面.他們首先設計了如圖所示的方案一,發現這種方案不可行,于是他們調整了扇形和圓的半徑,設計了如圖所示的方案二.(兩個方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切.方案一中扇形的弧與正方形的兩邊相切)

(1)請說明方案一不可行的理由;

(2)判斷方案二是否可行?若可行,請確定圓錐的母線長及其底面圓半徑;若不可行,請說明理由.

查看答案和解析>>

在一次數學探究性學習活動中,某學習小組要制作一個圓錐體模型,操作規則是:在一塊邊長為16cm的正方形紙片上剪出一個扇形和一個圓,使得扇形圍成圓錐的側面時,圓恰好是該圓錐的底面,他們首先設計了如圖所示的方案一,發現這種方案不可行,于是他們調整了扇形和圓的半徑,設計了如圖所示的方案二。(兩個方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切,方案一中扇形的弧與正方形的兩邊相切)
(1)請說明方案一不可行的理由;
(2)判斷方案二是否可行?若可行,請確定圓錐的母線長及其底面圓半徑;若不可行,請說明理由。

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视