八. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)利民商店經銷甲、乙兩種商品. 現有如下信息:

請根據以上信息,解答下列問題:

(1)甲、乙兩種商品的進貨單價各多少元?

(2)該商店平均每天賣出甲商品500件和乙商品300件.經調查發現,甲、乙兩種商品零售單價分別每降0.1元,這兩種商品每天可各多銷售100件.為了使每天獲取更大的利潤,商店決定把甲、乙兩種商品的零售單價都下降m元. 在不考慮其他因素的條件下,當m定為多少時,才能使商店每天銷售甲、乙兩種商品獲取的利潤之和最大?每天的最大利潤是多少?

 

 

查看答案和解析>>

(本小題滿分10分)

2011年3月11日13時46分日本發生了9.0級大地震,伴隨著就是海嘯。山坡上有一棵與水平面垂直的大樹,海嘯過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面(如圖所示)。

已知山坡的坡角∠AEF=23°,量得樹干的傾斜角為

∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°,AD=4m。

(1)求∠DAC的度數;

(2)求這棵大樹折點C到坡面AE的距離?

(結果精確到個位,參考數據:,,).

 

 

查看答案和解析>>

(本小題滿分10分)利民商店經銷甲、乙兩種商品. 現有如下信息:

請根據以上信息,解答下列問題:

(1)甲、乙兩種商品的進貨單價各多少元?

(2)該商店平均每天賣出甲商品500件和乙商品300件.經調查發現,甲、乙兩種商品零售單價分別每降0.1元,這兩種商品每天可各多銷售100件.為了使每天獲取更大的利潤,商店決定把甲、乙兩種商品的零售單價都下降m元. 在不考慮其他因素的條件下,當m定為多少時,才能使商店每天銷售甲、乙兩種商品獲取的利潤之和最大?每天的最大利潤是多少?

 

 

查看答案和解析>>

【改編】(本小題滿分10分)
數形結合作為一種數學思想方法,數形結合的應用大致又可分為兩種情形:或者借助于數的精確性來闡明形的某些屬性,即“以數解形”;或者借助形的幾何直觀性來闡明數之間的某種關系,即“以形助數”。                                                           如浙教版九上課本第109頁作業題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個結論:(1)AC·BC = AB·CD   (2)AC2= AD·AB
(1)請你用數形結合的“以數解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個根,求AD、MD的長。
(2)請你用數形結合的“以形助數”思想來解:設a、b、c、d都是正數,滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設AB=a,CD=d,AC=b,BC=c,構造圖1)

查看答案和解析>>

(本小題滿分10分)
如圖14①至圖14④中,兩平行線AB、CD音的距離均為6,點MAB上一定點.
思考:如圖14①中,圓心為O的半圓形紙片在AB、CD之間(包括AB、CD),其直徑MN在AB上,MN=8,點P為半圓上一點,設∠MOP=α,當α=________度時,點PCD的距離最小,最小值為____________.
探究一在圖14①的基礎上,以點M為旋轉中心,在ABCD之間順時針旋轉該半圓形紙片,直到不能再轉動為止.如圖14②,得到最大旋轉角∠BMO=_______度,此時點NCD的距離是______________.
探究二將圖14①中的扇形紙片NOP按下面對α的要求剪掉,使扇形紙片MOP繞點MAB、CD之間順時針旋轉.
⑴如圖14③,當α=60°時,求在旋轉過程中,點PCD的最小距離,并請指出旋轉角∠BMO的最大值:
⑵如圖14④,在扇形紙片MOP旋轉過程中,要保證點P能落在直線CD上,請確定α的取值范圍.
(參考數據:sin49°=,cos41°=tan37°=
            

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视