題目列表(包括答案和解析)
(本題滿分12分)
已知菱形ABCD的邊長為1.∠ADC=60°,等邊△AEF兩邊分別交邊DC、CB于點E、F。
1.(1)特殊發現:如圖1,若點E、F分別是邊DC、CB的中點.求證:菱形ABCD對角線AC、BD交點O即為等邊△AEF的外心;
2.(2)若點E、F始終分別在邊DC、CB上移動.記等邊△AEF的外心為點P.
①猜想驗證:如圖2.猜想△AEF的外心P落在哪一直線上,并加以證明;
②拓展運用:如圖3,當△AEF面積最小時,過點P任作一直線分別交邊DA于點M,交邊DC的延長線于點N,試判斷是否為定值.若是.請求出該定值;若不是.請說明理由。
(本題滿分8分)已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內作半圓,P是半圓上的動點(不與點A、B重合),連接PA、PB、PC、PD.
(1)如圖①,當PA的長度等于
時,∠PAB=60°;
當PA的長度等于 時,△PAD是等腰三角形;
(2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角
坐標系(點A即為原點O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3.坐
標為(a,b),試求2 S1 S3-S22的最大值,并求出此時a,b的值.
(本題滿分12分)
已知直角坐標系中菱形ABCD的位置如圖,C,D兩點的坐標分別為(4,0),(0,3).現有兩動點P,Q分別從A,C同時出發,點P沿線段AD向終點D運動,點Q沿折線CBA向終點A運動,設運動時間為t秒.
【小題1】(1)填空:菱形ABCD的邊長是 ▲ 、面積是 ▲ 、 高BE的長是 ▲ ;
【小題2】(2)探究下列問題:
若點P的速度為每秒1個單位,點Q的速度為每秒2個單位.當點Q在線段BA上時
② △APQ的面積S關于t的函數關系式,以及S的最大值;
【小題3】(3)在運動過程中是否存在某一時刻使得△APQ為等腰三角形,若存在求出t的值;若不存在說明理由.
(本題滿分8分)已知矩形ABCD的對角線相交于點O,M 、N分別是OD、OC上異于O、C、D的點。
(1)請你在下列條件①DM=CN,②OM=ON,③MN是△OCD的中位線,④MN∥AB中任選一個添加條件(或添加一個你認為更滿意的其他條件),使四邊形ABNM為等腰梯形,你添加的條件是 。
(2)添加條件后,請證明四邊形ABNM是等腰梯形。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com