正四棱柱ABCD―A1B1C1D1中.底面邊長為E.F分別是AB1.CB1的中點.O為AC中點.連接B1O交EF于O1. (1)求證:D1O1⊥B1O 查看更多

 

題目列表(包括答案和解析)

正四棱柱ABCD-A1B1C1D1中,底面邊長為a,側棱AA1長為ka(k>0),E為側棱BB1的中點,記以AD1為棱,EAD1,A1AD1為面的二面角大小為θ.
(1)是否存在k值,使直線AE⊥平面A1D1E,若存在,求出k值;若不存在,說明理由;
(2)試比較tanθ與2
2
的大。

查看答案和解析>>

正四棱柱ABCD—A1B1C1D1中,底面邊長為2,側棱長為4,E、F分別為棱AB、BC的中點.

(1)求證:平面B1EF⊥平面BDD1B1;?

(2)求點D1到平面B1EF的距離.?

查看答案和解析>>

正四棱柱ABCD-A1B1C1D1中,底面邊長為a,側棱AA1長為ka(k>0),E為側棱BB1的中點,記以AD1為棱,EAD1,A1AD1為面的二面角大小為θ.
(1)是否存在k值,使直線AE⊥平面A1D1E,若存在,求出k值;若不存在,說明理由;
(2)試比較tanθ與的大。

查看答案和解析>>

正四棱柱ABCD-A1B1C1D1中,底面邊長為a,側棱AA1長為ka(k>0),E為側棱BB1的中點,記以AD1為棱,EAD1,A1AD1為面的二面角大小為θ.
(1)是否存在k值,使直線AE⊥平面A1D1E,若存在,求出k值;若不存在,說明理由;
(2)試比較tanθ與2
2
的大。

查看答案和解析>>

在正四棱柱ABCD—A1B1C1D1中,底面邊長為2,側棱長為3,E、F分別是AB1、CB1的中點,求證:平面D1EF⊥平面AB1C.

查看答案和解析>>

19.解:(1)連接B1D1,ABCD―A1B1C1D1為四棱柱,

,

則在四邊形BB1D1D中(如圖),

得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

即D1O1⊥B1O

   (2)解法一:連接OD1,△AB1C,△AD1C均為等腰

三角形,

且AB1=CB,AD1=CD1,所有OD1⊥AC,B1O⊥AC,

顯然:∠D1OB1為所求二面角D1―AC―B1的平面角,

由:OD1=OB1=B1D=2知

解法二:由ABCD―A1B1C1D1為四棱柱,得面BB1D1D⊥面ABCD

所以O1D1在平面ABCD上的射影為BD,由四邊形ABCD為正方形,AC⊥BD,由三垂線定理知,O1D1⊥AC?傻肈1O1⊥平面AB1C。

又因為B1O⊥AC,所以∠D1OB1所求二面角D1―AC―B1的平面角,

20.解:(1)曲線C上任意一點M到點F(0,1)的距離比它到直線的距離小1,

可得|MF|等于M到y=-1的距離,由拋物線的定義知,M點的軌跡為

   (2)當直線的斜率不存在時,它與曲線C只有一個交點,不合題意,

    當直線m與x軸不垂直時,設直線m的方程為

   代入    ①

    恒成立,

    設交點A,B的坐標分別為

∴直線m與曲線C恒有兩個不同交點。

    ②        ③

故直線m的方程為

21.解:(1)由已知得

   

   (2)

   

   

   (3)

   

 

久久精品免费一区二区视