}Ŀб(𰸺ͽ)
ABCJČ߅L2
.
JAĴ
ڣėlABCeֵ
֪f(x)DăɂQSľx
(1)f(x)څ^gϵֵСֵ
(2)JǡABCABC߅քeabcC
֪f(x)DăɂQSľx
(1)f(x)څ^gϵֵСֵ
(2)JǡABCABC߅քeabcC
BC |
AB |
BC |
AB |
AB |
BC |
OA1 |
OA1 |
2 |
1 |
2 |
A1A2 |
A2A3 |
A1A2 |
A2A3 |
OA1 |
2 |
1 |
2 |
An-1An |
lim |
n |
lim |
n |
OA1 |
A1A2 |
A2A3 |
OA1 |
A1A2 |
A2A3 |
С}M12֣
֪ABCȽ
1ֵ
2ֵ
һ. DCADB CCDAC
.11.
3ȣ3412.
13. 2 14. 9
15. 1
16⣺֪ã
(3)
ǡABCăȽ
(6)
2Ҷ9
ǡABCăȽ
12
17⣺I??????????????4
II????????????????7
??????????11
ȡֵ
????????????????????????12
18. :
(1) .6
(2)ԭʽ
.8
19⣺1
2
tС
???????????????????4
Үr
{f
Ć{f^g_^g۷֣??7
2r
r
?????????????????11
ČQS??????????14
20.⣺r
.
[13].---------------------------------3
ஔr
-2
26.
Ԯr
r
----4
ڳM=26ʹM.
ʺ[13]ϵн纯.---------------------------6
.
1
1----------------8
------------------------10
@Ȼ
φ{fp
tt+ޕr1.
@Ȼ
φ{fp
tr
0a1
aȡֵ0a1. -------------14
21.⣺(I) } f (e) = pe2ln e = qe 2 1
Þ (pq) (e + ) = 0 2
e + 0
p = q 3
(II) (I) ֪ f (x) = px2ln x
f(x) = p + = 4
h(x) = px 22x + pҪʹ f (x) 䶨x (0,+¥) Ȟ{ֻ h(x) (0,+¥) ȝM㣺h(x)0 h(x)0 . 5
p = 0r h(x) = 2x x > 0 h(x) < 0 f(x) = < 0
f (x) (0,+¥) Ȟ{fp p = 0m}. 6
p > 0rh(x) = px 22x + pD_ϵĒタQS x = (0,+¥) h(x)min = p
ֻ p1 p1 r h(x)0f(x)0
f (x) (0,+¥) Ȟ{f
p1m}. 7
p < 0rh(x) = px 22x + pD_µĒタQS x = Ï (0,+¥)
ֻ h(0)0 p0r h(x)0 (0,+¥) .
p < 0m}. 8
CϿɵp1 p0 9
⣺(II) (I) ֪ f (x) = px2ln x
f(x) = p + = p (1 + ) 4
Ҫʹ f (x) 䶨x (0,+¥) Ȟ{ֻ f(x) (0,+¥) ȝM㣺f(x)0 f(x)0 . 5
f(x)0 Û p (1 + )0 Û p Û p()maxx > 0
= 1 x = 1 r̖ ()max = 1
p1 7
f(x)0 Û p (1 + )0 Û p Û p()minx > 0
> 0 x 0 r 0 p0 8
CϿɵãp1 p0 9
(III) g(x) = [1,e] ǜp
x = e rg(x)min = 2x = 1 rg(x)max = 2e
g(x) Î [2,2e] 10
p0 r (II) ֪ f (x) [1,e] fp Þ f (x)max = f (1) = 0 < 2} 11
0 < p < 1 rx Î [1,e] Þ x0
f (x) = p (x)2ln xx2ln x
߅ f (x) p = 1 rı_ʽ [1,e] f
f (x)x2ln xe2ln e = e2 < 2} 12
p1 r (II) ֪ f (x) [1,e] Bmff (1) = 0 < 2g(x) [1,e] ǜp
} Û f (x)max > g(x)min = 2x Î [1,e]
Þ f (x)max = f (e) = p (e)2ln e > 2
Þ p > 13
Cp ȡֵ (,+¥) 14
ʡW`ͲϢeƽ_ | WкϢe^ | p_e^ | vʷ̓oxкϢe^ | ֙e^
`ͲϢeԒ027-86699610 e]䣺58377363@163.com