(2).ǵĴС

 

}Ŀб(𰸺ͽ)

 

ABCJČ߅L2.

JAĴ

ڣ񣩵ėlABCeֵ   

 

 

 

 

 

 

 

 

 

鿴𰸺ͽ>>

֪f(x)DăɂQSľx

(1)󺯔f(x)څ^gϵֵСֵ

(2)JǡABCABC߅քeabcC

鿴𰸺ͽ>>

֪f(x)DăɂQSľx

(1)󺯔f(x)څ^gϵֵСֵ

(2)JǡABCABC߅քeabcC

鿴𰸺ͽ>>

Ӣҽ̾WD
BC
ĴС
AB
Сk
BC
ķ
AB
ķrDȽǵõt҂Q
AB
^һΣkõ
BC
 ֪
OA1
=(10)

1
OA1
^2(
2

1
2
)
քeõ
A1A2
A2A3

A1A2
A2A3
ˣ
2
OA1
^n-1(
2

1
2
)
õһ
An-1An
nN*n1OcAnxnynAnĘOλA(
lim
n
xn
lim
n
yn)

3
OA1
^2Σkõ
A1A2

A2A3
k0ȡʣ0У
OA1

A1A2

A2A3
ǡ܉򘋳һΣA3cOغϣkֵ

鿴𰸺ͽ>>

С}M12֣

    ֪ABCȽ

   1ֵ

   2ֵ

 

鿴𰸺ͽ>>

һ. DCADB   CCDAC

.11. 3ȣ3412.   13. 2  14.  9  15. 1

16⣺֪ã   (3)

ǡABCăȽ     (6)

9

ǡABCăȽ12

17⣺I??????????????4

II????????????????7

??????????11

ȡֵ????????????????????????12

18. :  (1) .6

(2)ԭʽ

       .8

19⣺1

  2

tС ???????????????????4    

Үr{f

Ć{f^g_^g۷֣??7

 

2rr

?????????????????11     

ČQS??????????14    

20.⣺񣩡r.

     [13].---------------------------------3

     ஔr -226.

     Ԯrr----4

 ڳM=26ʹM.

       ʺ[13]ϵн纯.---------------------------6

򣩡. 11----------------8

         ------------------------10

@Ȼφ{fp

tt+ޕr1. 

φ{fp

tr  

      0a1                              

aȡֵ0a1. -------------14

 

 

 

 

 

21.⣺(I) } f (e) = pe2ln e = qe 2      1

 Þ (pq) (e + ) = 0       2

e + 0

    p = q       3

(II)  (I) ֪ f (x) = px2ln x

 f(x) = p + =   4

h(x) = px 22x + pҪʹ f (x) 䶨x (0,+¥) Ȟ{ֻ h(x) (0,+¥) ȝM㣺h(x)0 h(x)0 .     5

p = 0r h(x) = 2x x > 0 h(x) < 0 f(x) =  < 0

    f (x) (0,+¥) Ȟ{fp p = 0m}.      6

p > 0rh(x) = px 22x + pD_ϵĒタQS x = (0,+¥)      h(x)min = p

ֻ p1 p1 r h(x)0f(x)0

    f (x) (0,+¥) Ȟ{f

p1m}.      7

p < 0rh(x) = px 22x + pD_µĒタQS x = Ï (0,+¥)

ֻ h(0)0 p0r h(x)0 (0,+¥) .

p < 0m}.      8

CϿɵp1 p0     9

⣺(II)      (I) ֪ f (x) = px2ln x

 f(x) = p + = p (1 + )      4

Ҫʹ f (x) 䶨x (0,+¥) Ȟ{ֻ f(x) (0,+¥) ȝM㣺f(x)0 f(x)0 .    5

f(x)0 Û p (1 + )0 Û p Û p()maxx > 0

    = 1 x = 1 r̖ ()max = 1

    p1       7

f(x)0 Û p (1 + )0 Û p  Û p()minx > 0

> 0 x 0 r 0 p0    8

CϿɵãp1 p0     9

(III)     g(x) = [1,e] ǜp

    x = e rg(x)min = 2x = 1 rg(x)max = 2e

    g(x) Î [2,2e] 10

p0 r (II) ֪ f (x) [1,e] fp Þ f (x)max = f (1) = 0 < 2}       11

0 < p < 1 rx Î [1,e] Þ x0

    f (x) = p (x)2ln xx2ln x

߅ f (x) p = 1 rı_ʽ [1,e] f

    f (x)x2ln xe2ln e = e2 < 2}       12

p1 r (II) ֪ f (x) [1,e] Bmff (1) = 0 < 2g(x) [1,e] ǜp

    } Û f (x)max > g(x)min = 2x Î [1,e]

 Þ f (x)max = f (e) = p (e)2ln e > 2

 Þ p >      13

Cp ȡֵ (,+¥) 14

 

 

 

 

 

 


ͬԴ
久久精品免费一区二区视