已知點 查看更多

 

題目列表(包括答案和解析)

已知點A(1,2)、B(4,2),向量
AB
a
=(1,3)平移后所得向量的坐標為(  )
A、(3,0)
B、(4,3)
C、(-4,-3)
D、(-4,3)

查看答案和解析>>

已知點F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1
的左、右焦點,過F1且垂直于x軸的直線與雙曲線交于A、B兩點,若△ABF2為銳角三角形,則該雙曲線的離心率e的取值范圍是( 。
A、(1,+∞)
B、(1,
3
)
C、(1,2)
D、(1,1+
2
)

查看答案和解析>>

已知點A(1,-2),若向量
AB
與a=(2,3)同向,|
AB
|=2
13
,則點B的坐標為
 

查看答案和解析>>

已知點(1,
1
3
)是函數f(x)=ax(a>0),且a≠1)的圖象上一點,等比數列{an}的前n項和為f(n)-c.數列{bn}(bn>0)的首項為c,且前n項和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求數列{an}和{bn}的通項公式;
(2)若數列{
1
bnbn+1
}前n項和為Tn,問Tn
1000
2009
的最小正整數n是多少?

查看答案和解析>>

已知點A(-1,3),B(5,-7)和直線l:3x+4y-20=0.
(1)求過點A與直線l平行的直線l1的方程;
(2)求過A,B的中點與l垂直的直線l2的方程.

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標系

       則       2分

       由  1分

      

       又平面BDF,

       平面BDF。       2分

   (Ⅱ)解:設異面直線CM與FD所成角的大小為

      

      

       。

       即異面直線CM與FD所成角的大小為   3分

   (III)解:平面ADF,

       平面ADF的法向量為      1分

       設平面BDF的法向量為

       由

            1分

      

          1分

       由圖可知二面角A―DF―B的大小為   1分

19.解:(I)設該小組中有n個女生,根據題意,得

      

       解得n=6,n=4(舍去)

       該小組中有6個女生。        6分

   (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數不少于2人,

       即通過測試的人數為3人或2人。

       記甲、乙、丙通過測試分別為事件A、B、C,則

      

            6分

20.解:(I)的等差中項,

             1分

       。

             2分

                1分

   (Ⅱ)

               2分

      

          3分

       ,   

       當且僅當時等號成立。

      

21.解:(I)到漸近線=0的距離為,兩條準線之間的距離為1,

               3分

            1分

   (II)由題意,設

       由     1分

            3分

   (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關于原點對稱。

       而   

       1分

       點O到直線的距離   1分

              1分

             1分

22.解:(I)當t=1時,   1分

       當變化時,的變化情況如下表:

      

(-1,1)

1

(1,2)

0

+

極小值

       由上表,可知當    2分

            1分

   (Ⅱ)

      

       顯然的根。    1分

       為使處取得極值,必須成立。

       即有    2分

      

       的個數是2。

   (III)當時,若恒成立,

       即   1分

      

       ①當時,

      

       上單調遞增。

      

      

       解得    1分

       ②當時,令

       得(負值舍去)。

   (i)若時,

       上單調遞減。

      

      

           1分

   (ii)若

       時,

       當

       上單調遞增,

      

       要使,則

      

            2分

   (注:可證上恒為負數。)

       綜上所述,t的取值范圍是。        1分

 


同步練習冊答案
久久精品免费一区二区视