(I)若圖象的最低點坐標, 查看更多

 

題目列表(包括答案和解析)

函數f(x)=Asin(ωx+?)(A>0,ω>0,0<?<
π
2
)在一個周期內的圖象如圖所示,P(x0,y0)是圖象的最髙點,Q是圖象的最低點,M(3,0)是線段PQ與x軸的交點,且cos∠POM=
5
5
,|OP|=
5

(I)求出點P的坐標;
(Ⅱ)求函數f(x)的解析式;
(Ⅲ)將函數y=f(x)的圖象向右平移2個單位后得到函數y=g(x)的圖象,試求函數h(x)=f(x)•g(x)的單調遞增區間.試求函數h(x)=f(x)•g(x)的單調遞增區間.

查看答案和解析>>

(2009•浦東新區一模)對于函數f1(x),f2(x),h(x),如果存在實數a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數.
(1)下面給出兩組函數,h(x)是否分別為f1(x),f2(x)的生成函數?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)
;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數t的取值范圍.
(3)設f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數h(x)圖象的最低點坐標為(2,8).若對于任意正實數x1,x2且x1+x2=1,試問是否存在最大的常數m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

(2012•湖南)函數f(x)=sin (ωx+φ)的導函數y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點,A,C為圖象與x軸的兩個交點,B為圖象的最低點.
(1)若φ=
π
6
,點P的坐標為(0,
3
3
2
),則ω=
3
3
;
(2)若在曲線段
ABC
與x軸所圍成的區域內隨機取一點,則該點在△ABC內的概率為
π
4
π
4

查看答案和解析>>

函數f(x)=sin (ωx+φ)的導函數y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點,A,C為圖象與x軸的兩個交點,B為圖象的最低點.
(1)若φ=,點P的坐標為(0,),則ω=    ;
(2)若在曲線段與x軸所圍成的區域內隨機取一點,則該點在△ABC內的概率為   

查看答案和解析>>

函數f(x)=sin (ωx+φ)的導函數y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點,A,C為圖象與x軸的兩個交點,B為圖象的最低點.
(1)若φ=,點P的坐標為(0,),則ω=    ;
(2)若在曲線段與x軸所圍成的區域內隨機取一點,則該點在△ABC內的概率為   

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標系

       則       2分

       由  1分

      

       又平面BDF,

       平面BDF。       2分

   (Ⅱ)解:設異面直線CM與FD所成角的大小為

      

      

      

       即異面直線CM與FD所成角的大小為   3分

   (III)解:平面ADF,

       平面ADF的法向量為      1分

       設平面BDF的法向量為

       由

            1分

      

          1分

       由圖可知二面角A―DF―B的大小為   1分

19.解:(I)設該小組中有n個女生,根據題意,得

      

       解得n=6,n=4(舍去)

       該小組中有6個女生。        6分

   (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數不少于2人,

       即通過測試的人數為3人或2人。

       記甲、乙、丙通過測試分別為事件A、B、C,則

      

            6分

20.解:(I)的等差中項,

             1分

       。

             2分

                1分

   (Ⅱ)

               2分

      

          3分

       ,   

       當且僅當時等號成立。

      

21.解:(I)到漸近線=0的距離為,兩條準線之間的距離為1,

               3分

            1分

   (II)由題意,設

       由     1分

            3分

   (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關于原點對稱。

       而   

       1分

       點O到直線的距離   1分

              1分

             1分

22.解:(I)當t=1時,   1分

       當變化時,的變化情況如下表:

      

(-1,1)

1

(1,2)

0

+

極小值

       由上表,可知當    2分

            1分

   (Ⅱ)

      

       顯然的根。    1分

       為使處取得極值,必須成立。

       即有    2分

      

       的個數是2。

   (III)當時,若恒成立,

       即   1分

      

       ①當時,

       ,

       上單調遞增。

      

      

       解得    1分

       ②當時,令

       得(負值舍去)。

   (i)若時,

       上單調遞減。

      

      

           1分

   (ii)若

       時,

       當

       上單調遞增,

      

       要使,則

      

            2分

   (注:可證上恒為負數。)

       綜上所述,t的取值范圍是。        1分

 


同步練習冊答案
久久精品免费一区二区视