題目列表(包括答案和解析)
(本小題滿分14分)
已知函數。
(1)證明:
(2)若數列的通項公式為
,求數列
的前
項和
;w.w.w.k.s.5.u.c.o.m
(3)設數列滿足:
,設
,
若(2)中的滿足對任意不小于2的正整數
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點
在
軸上,點
在
軸的正半軸,點
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在
軸上移動時,求動點
的軌跡
方程;
(本小題滿分14分)設函數
(1)求函數的單調區間;
(2)若當時,不等式
恒成立,求實數
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數,
(1)討論時,
的單調性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數,使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設數列的前
項和為
,對任意的正整數
,都有
成立,記
。
(I)求數列的通項公式;
(II)記,設數列
的前
項和為
,求證:對任意正整數
都有
;
(III)設數列的前
項和為
。已知正實數
滿足:對任意正整數
恒成立,求
的最小值。
一、選擇題(本大題8小題,共40分,每小題給出的四個選項中,只有一項是符合要求)
題號
1
2
3
4
5
6
7
8
答案
A
C
A
D
A
B
B
B
二、填空題:(本大題共須作6小題,每小題5分,共30分,把答案填寫在題橫線上).
9、 10、
11、
12、3
▲選做題:在下面三道題中選做兩題,三題都選的只計算前兩題的得分。
13、3
;14、! ; 15、
三、解答題(本大題共6小題,共80分.解答應寫出文字說明、證明過程或演算步驟)
16、(本小題滿分14分)解:(1)的內角和
…………………1分
……………5分
…………………7分
(2)……………9分
…………12分
當即
時,y取得最大值
………………………14分
17.(本小題滿分12分)
解:(1)3個旅游團選擇3條不同線路的概率為:P1=…………3分
(2)恰有兩條線路沒有被選擇的概率為:P2=……6分
(3)設選擇甲線路旅游團數為ξ,則ξ=0,1,2,3………………7分
P(ξ=0)= P(ξ=1)=
P(ξ=2)= P(ξ=3)=
………………9分
∴ξ的分布列為:
ξ
0
1
2
3
………………10分
∴期望Eξ=0×+1×
+2×
+3×
=
………………12分
18.(本小題滿分12分)
|