A. 查看更多

 

題目列表(包括答案和解析)

精英家教網A.(選修4-4坐標系與參數方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
 

查看答案和解析>>

精英家教網A.(不等式選做題)若關于x的不等式|x+3|-|x+2|≥log2a有解,則實數a的取值范圍是:
 

B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內接四邊形,延長AB和DC相交于點P.若
PB
PA
=
1
2
,
PC
PD
=
1
3
,則
BC
AD
的值為
 

C.(坐標系與參數方程選做題)設曲線C的參數方程為
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ為參數),以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ=
2
cosθ-sinθ
,則曲線C上到直線l距離為
2
的點的個數為:
 

查看答案和解析>>

精英家教網A.(不等式選做題)
函數f(x)=x2-x-a2+a+1對于任一實數x,均有f(x)≥0.則實數a滿足的條件是
 

B.(幾何證明選做題)
如圖,圓O是△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=2
3
,AB=BC=4,則AC的長為
 

C.(坐標系與參數方程選做題)
在極坐標系中,曲線ρ=4cos(θ-
π
3
)
上任意兩點間的距離的最大值為
 

查看答案和解析>>

精英家教網A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如圖,AB是⊙O的直徑,P是AB延長線上的一點,過P作⊙O的切線,切點為CPC=2
3
,若∠CAP=30°,則⊙O的直徑AB=
 

C.(極坐標系與參數方程選做題)若圓C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ為參數)
與直線x-y+m=0相切,則m=
 

查看答案和解析>>

精英家教網A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
 


B.(幾何證明選做題)如圖,直線PC與圓O相切于點C,割線PAB經過圓心O,
弦CD⊥AB于點E,PC=4,PB=8,則CE=
 

C.(坐標系與參數方程選做題)在極坐標系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
π
4
)=2
2
的距離為
 

查看答案和解析>>

一、              選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個備選項中,有且只有一項是符合要求的.

題號

1

2

3

4

5

6

7

8

答案

D

A

A

C

B

B

C

A

二、              填空題:本大題共7小題,每小題5分,共30分.其中13~15小題是選做題,考生只能選做兩題,若三題全答,則只計算前兩題得分.

9.             10.             11.

12.②③                                13.,

14.                     15.,

三、解答題:本大題共6小題,共80分.解答應寫出文字說明、證明過程或演算步驟.

16.    解:(Ⅰ)因為,,所以

   

因此,當,即)時,取得最大值;

(Ⅱ)由,兩邊平方得

,即

因此,

17.    解:(Ⅰ)記“小球落入袋中”為事件,“小球落入袋中”為事件,則事件的對立事件為,而小球落入袋中當且僅當小球一直向左落下或一直向右落下,故

從而;

(Ⅱ)顯然,隨機變量,故

18.    解: 建立如圖所示的空間直角坐標系,

并設,則

    (Ⅰ),,

所以,從而得

;

(Ⅱ)設是平面

法向量,則由,

可以取

    顯然,為平面的法向量.

    設二面角的平面角為,則此二面角的余弦值

19.    解:(Ⅰ)依題意,有),化簡得

),

這就是動點的軌跡的方程;

    (Ⅱ)依題意,可設、,則有

,

兩式相減,得,由此得點的軌跡方程為

).

    設直線(其中),則

,

故由,即,解之得的取值范圍是

20.    解:(Ⅰ)依題意知:直線是函數在點處的切線,故其斜率

,

所以直線的方程為

    又因為直線的圖像相切,所以由

,

不合題意,舍去);

    (Ⅱ)因為),所以

時,;當時,

因此,上單調遞增,在上單調遞減.

因此,當時,取得最大值;

(Ⅲ)當時,.由(Ⅱ)知:當時,,即.因此,有

21.    解:(Ⅰ),;

(Ⅱ)依題意,得,由此及

,

    由(Ⅰ)可猜想:).

    下面用數學歸納法予以證明:

    (1)當時,命題顯然成立;

    (2)假定當時命題成立,即有,則當時,由歸納假設及

,即

解之得

不合題意,舍去),

即當時,命題成立.

    由(1)、(2)知:命題成立.

(Ⅲ)

       

       

),則,所以上是增函數,故當時,取得最小值,即當時,

,

    ,即

   

解之得,實數的取值范圍為


同步練習冊答案
久久精品免费一区二区视