題目列表(包括答案和解析)
( 14 分) 受轎車在保修期內維修費等因素的影響, 企業產生每輛轎車的利潤與該轎車首次出現故障的時間有關,某轎車制造廠生產甲、乙兩種品牌轎車,保修期均為 2 年,現從該廠已售出的兩 種品牌轎車中隨機抽取 50 輛,統計數據如下:
將頻率視為概率,解答下列問題:
(I)從該廠生產的甲品牌轎車中隨機抽取一輛,求首次出現故障發生在保修期內的概率;
(II)若該廠生產的轎車均能售出,記住生產一輛甲品牌轎車的利潤為
,生產一輛乙品牌轎
車的利潤為
,分別求
,
的分布列 ;
(III)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產其中一 種品牌轎 車,若從經濟效益的角度考慮,你認為應該產生哪種品牌的轎車?說明理由.
(本小題滿分14分)
因發生意外交通事故,一輛貨車上的某種液體泄漏到一漁塘中.為了治污,根據環保部門的建議,現決定在漁塘中投放一種可與污染液體發生化學反應的藥劑.已知每投放,且
個單位的藥劑,它在水中釋放的濃度
(克/升)隨著時間
(天)變化的函數關系式近似為
,其中
.
若多次投放,則某一時刻水中的藥劑濃度為每次投放的藥劑在相應時刻所釋放的濃度之和.根據經驗,
當水中藥劑的濃度不低于4(克/升)時,它才能起到有效治污的作用.
(Ⅰ)若一次投放4個單位的藥劑,則有效治污時間可達幾天?
(Ⅱ)若第一次投放2個單位的藥劑,6天后再投放個單位的藥劑,要使接下來的4天中能夠持續有效治污,試求
的最小值(精確到0.1,參考數據:
取1.4).
已知函數 R).
(Ⅰ)若 ,求曲線
在點
處的的切線方程;
(Ⅱ)若 對任意
恒成立,求實數a的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。
第一問中,利用當時,
.
因為切點為(
),
則
,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即
即可。
Ⅰ)當時,
.
,
因為切點為(),
則
,
所以在點()處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以
恒成立,
故在
上單調遞增,
……12分
要使恒成立,則
,解得
.……15分
解法二:
……7分
(1)當時,
在
上恒成立,
故在
上單調遞增,
即
.
……10分
(2)當時,令
,對稱軸
,
則在
上單調遞增,又
① 當,即
時,
在
上恒成立,
所以在
單調遞增,
即
,不合題意,舍去
②當時,
,
不合題意,舍去 14分
綜上所述:
為了解高中一年級學生身高情況,某校按10%的比例對全校700名高中一年級學生按性別進行抽樣檢查,測得身高頻數分布表如下表1、表2.
表1:男生身高頻數分布表
身高(cm) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
[180,185) |
[185,190) |
頻數 |
2 |
5 |
14 |
13 |
4 |
2 |
表2:女生身高頻數分布表
身高(cm) |
[150,155) |
[155,160) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
頻數 |
1 |
7 |
12 |
6 |
3 |
1 |
(I)求該校男生的人數并完成下面頻率分布直方圖;
(II)估計該校學生身高在的概率;
(III)從樣本中身高在180190cm之間的男生中任選2人,求至少有1人身高在185
190cm之間的概率。
【解析】第一問樣本中男生人數為40 ,
由分層抽樣比例為10%可得全校男生人數為400
(2)中由表1、表2知,樣本中身高在的學生人數為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學生身高在
的頻率
故由估計該校學生身高在
的概率
(3)中樣本中身高在180185cm之間的男生有4人,設其編號為①②③④ 樣本中身高在185
190cm之間的男生有2人,設其編號為⑤⑥從上述6人中任取2人的樹狀圖,故從樣本中身高在180
190cm之間的男生中任選2人得所有可能結果數為15,求至少有1人身高在185
190cm之間的可能結果數為9,因此,所求概率
由表1、表2知,樣本中身高在的學生人數為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學生身高在
的頻率-----------------------------------------6分
故由估計該校學生身高在
的概率
.--------------------8分
(3)樣本中身高在180185cm之間的男生有4人,設其編號為①②③④ 樣本中身高在185
190cm之間的男生有2人,設其編號為⑤⑥從上述6人中任取2人的樹狀圖為:
--10分
故從樣本中身高在180190cm之間的男生中任選2人得所有可能結果數為15,求至少有1人身高在185
190cm之間的可能結果數為9,因此,所求概率
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com