題目列表(包括答案和解析)
在函數的圖象上有
、
、
三點,橫坐標分別為
其中
.
⑴求的面積
的表達式;
⑵求的值域.
【解析】由題意利用分割可先表示三角形ABC的面積,然后應用對數運算性質及二次函數的性質求解函數的最大值,屬于知識的簡單綜合.
已知,
,
分別為
三個內角
,
,
的對邊,
.
(Ⅰ)求;
(Ⅱ)若=2,
的面積為
,求
,
.
【命題意圖】本題主要考查正余弦定理應用,是簡單題.
【解析】(Ⅰ)由及正弦定理得
由于,所以
,
又,故
.
(Ⅱ) 的面積
=
=
,故
=4,
而 故
=8,解得
=2
已知曲線的參數方程是
(
是參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
:的極坐標方程是
=2,正方形ABCD的頂點都在
上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2,
).
(Ⅰ)求點A,B,C,D的直角坐標;
(Ⅱ)設P為上任意一點,求
的取值范圍.
【命題意圖】本題考查了參數方程與極坐標,是容易題型.
【解析】(Ⅰ)由已知可得,
,
,
,
即A(1,),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)設,令
=
,
則=
=
,
∵,∴
的取值范圍是[32,52]
已知等差數列{an}的前n項和為Sn,a5=5,S5=15,則數列的前100項和為
(A)
(B)
(C)
(D)
【解析】由,得
,所以
,所以
,又
,選A.
數列{an}滿足an+1+(-1)n an =2n-1,則{an}的前60項和為
(A)3690 (B)3660 (C)1845 (D)1830
【解析】由得,
,
即,也有
,兩式相加得
,設
為整數,
則,
于是
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com