題目列表(包括答案和解析)
1 |
2 |
x |
1-x |
OM |
1 |
2 |
OA |
OB |
1 |
2 |
1 |
n |
2 |
n |
n-1 |
n |
1 |
12 |
已知遞增等差數列滿足:
,且
成等比數列.
(1)求數列的通項公式
;
(2)若不等式對任意
恒成立,試猜想出實數
的最小值,并證明.
【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列公差為
,
由題意可知,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當
時,
;當
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設數列公差為
,由題意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當時,
;當
時,
;
而,所以猜想,
的最小值為
. …………8分
下證不等式對任意
恒成立.
方法一:數學歸納法.
當時,
,成立.
假設當時,不等式
成立,
當時,
,
…………10分
只要證 ,只要證
,
只要證 ,只要證
,
只要證 ,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調性證明.
要證
只要證 ,
設數列的通項公式
, …………10分
, …………12分
所以對,都有
,可知數列
為單調遞減數列.
而,所以
恒成立,
故的最小值為
.
在平面直角坐標系中,已知
共線,且數列
是公差為6的等差數列.
(1)若,
,求數列
的通項公式;
(2)設,且12<a≤15,求數列
中的最小值的項.
(本小題滿分12)
數列中,
,
,且滿足
,
(1)求數列的通項公式;
(2)設(
),
(
)是否存在最大的整數
,使得對任意
均有
成立,若存在,求出
的值,若不存在,說明理由.
(本小題滿分12分)
已知等比數列中,
,
,且公比
.
(Ⅰ)求數列的通項公式;
(Ⅱ)設,求
的最大值及相應的
值.
一、選擇題(每小題5分,共50分)
1―5:ABCDC 6―10:BAAAD
二、填空題(每小題4分,共24分)
11.;12.99;13.207;14.0;15.2;
16.[1,2]或填[3,4]或填它們的任一子區間(答案有無數個)。
三、解答題(共76分)
17.(1)解:由
有………………2分
由,……………3分
由余弦定理……5分
當…………7分
(2)由
則,……………………9分
由
……………………13分
18.(本小題滿分13分)
解:(1)①只安排2位接線員,則2路及2路以下電話同時打入均能接通,其概率
故所求概率;……………………4分
②“損害度” ………………8分
(2)∵在一天的這一時間內同時電話打入數ξ的數學期望為
0×0.13+1×0.35+2×0.27+3×0.14+4×0.85+5×0.02+6×0.01=1.79
∴一周五個工作日的這一時間電話打入數ξ的數學期望等于5×1.79=8.95.……13分
19.(1)連結B1D1,過F作B1D1的垂線,垂足為K.
∵BB1與兩底面ABCD,A1B
FK⊥BB1
∴FK⊥B1D1
FK⊥平面BDD1B1,
B1D1∩BB1=B1
又AE⊥BB1
又AE⊥BD AE⊥平面BDD1B1
因此KF∥AE.
BB1∩BD=B
∴∠BFK為異面直線BF與AE所成的角,連結BK,由FK⊥面BDD1B1得FK⊥BK,
從而△BKF為Rt△.
在Rt△B1KF和Rt△B1D得:
又BF=.
∴異面直線BF與AE所成的角為arccos.……………………4分
(2)由于DA⊥平面AA1B由A作BF的垂線AG,垂足為G,連結DG,由三垂線定理
知BG⊥DG.
∴∠AGD即為平面BDF與平面AA1B所成二面角的平面角. 且∠DAG=90°
在平面AA1B1B中,延長BF與AA1交于點S.
|