題目列表(包括答案和解析)
為了了解某市工人開展體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區中抽取7個工廠進行調查,已知A,B,C區中分別有18,27,18個工廠
(Ⅰ)從A,B,C區中分別抽取的工廠個數;
(Ⅱ)若從抽取的7個工廠中隨機抽取2個進行調查結果的對比,計算這2個工廠中至少有1個來自A區的概率.
【解析】本試題主要考查了統計和概率的綜合運用。
第一問工廠總數為18+27+18=63,樣本容量與總體中的個體數比為7/63=1/9…3分
所以從A,B,C三個區中應分別抽取的工廠個數為2,3,2。
第二問設A1,A2為在A區中的抽得的2個工廠,B1,B2,B3為在B區中抽得的3個工廠,
C1,C2為在C區中抽得的2個工廠。
這7個工廠中隨機的抽取2個,全部的可能結果有1/2*7*6=32種。
隨機的抽取的2個工廠至少有一個來自A區的結果有A1,A2),A1,B2),A1,B1),
A1,B3)A1,C2),A1,C1), …………9分
同理A2還能給合5種,一共有11種。
所以所求的概率為p=11/21
某中學研究性學習小組,為了考察高中學生的作文水平與愛看課外書的關系,在本校高三年級隨機調查了 50名學生.調査結果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)試根據以上數據完成以下2×2列聯表,并運用獨立性檢驗思想,指出有多大把握認為中學生的作文水平與愛看課外書有關系?
高中學生的作文水平與愛看課外書的2×2列聯表
|
愛看課外書 |
不愛看課外書 |
總計 |
作文水平好 |
|
|
|
作文水平一般 |
|
|
|
總計 |
|
|
|
(Ⅱ)將其中某5名愛看課外書且作文水平好的學生分別編號為1、2、3、4、5,某5名愛看課外書且作文水平一般的學生也分別編號為1、2、3、4、5,從這兩組學生中各任選1人進行學習交流,求被選取的兩名學生的編號之和為3的倍數或4的倍數的概率.
參考公式:,其中
.
參考數據:
|
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
【解析】本試題主要考查了古典概型和列聯表中獨立性檢驗的運用。結合公式為判定兩個分類變量的相關性,
第二問中,確定
結合互斥事件的概率求解得到。
解:因為2×2列聯表如下
|
愛看課外書 |
不愛看課外書 |
總計 |
作文水平好 |
18 |
6 |
24 |
作文水平一般 |
7 |
19 |
26 |
總計 |
25 |
25 |
50 |
已知各項都不為零的數列的前n項和為
,
,向量
,其中
N*,且
∥
.
(Ⅰ)求數列的通項公式及
;
(Ⅱ)若數列的前n項和為
,且
(其中
是首項
,第四項為
的等比數列的公比),求證:
.
【解析】本試題主要考查了數列的通項公式和前n項和公式的運用。
(1)因為,對n=1,
分別求解通項公式,然后合并。利用
,求解
(2)利用
裂項后求和得到結論。
解:(1) ……1分
當時,
……2分
(
)……5分
……7分
……9分
證明:當時,
當時,
下表是關于宿州市服裝機械廠某設備的使用年限(年)和所需要的維修費用
(萬元)的幾組統計數據:
|
2 |
3 |
4 |
5 |
6 |
|
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
(Ⅰ)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程;
(Ⅱ)估計使用年限為10年時,維修費用為多少?
(參考:(1)
(2) )
【解析】本試題主要考查了線性回歸方程的求解和簡單的運用。
已知點(
),過點
作拋物線
的切線,切點分別為
、
(其中
).
(Ⅰ)若,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線的方程是
,且以點
為圓心的圓
與直線
相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質的運用。直線與圓的位置關系的運用。
中∵直線與曲線
相切,且過點
,∴
,利用求根公式得到結論先求直線
的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
,借助于函數的性質圓
面積的最小值
(Ⅰ)由可得,
. ------1分
∵直線與曲線
相切,且過點
,∴
,即
,
∴,或
, --------------------3分
同理可得:,或
----------------4分
∵,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,,
,則
的斜率
,
∴直線的方程為:
,又
,
∴,即
. -----------------7分
∵點到直線
的距離即為圓
的半徑,即
,--------------8分
故圓的面積為
. --------------------9分
(Ⅲ)∵直線的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
, ………10分
∴
,
當且僅當,即
,
時取等號.
故圓面積的最小值
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com