15.解析:7.本題考查了圓和切線的基本知識. 查看更多

 

題目列表(包括答案和解析)

為了了解某市工人開展體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區中抽取7個工廠進行調查,已知A,B,C區中分別有18,27,18個工廠

(Ⅰ)從A,B,C區中分別抽取的工廠個數;

(Ⅱ)若從抽取的7個工廠中隨機抽取2個進行調查結果的對比,計算這2個工廠中至少有1個來自A區的概率.

【解析】本試題主要考查了統計和概率的綜合運用。

第一問工廠總數為18+27+18=63,樣本容量與總體中的個體數比為7/63=1/9…3分

所以從A,B,C三個區中應分別抽取的工廠個數為2,3,2。

第二問設A1,A2為在A區中的抽得的2個工廠,B1,B2­,B3為在B區中抽得的3個工廠,

C1,C2為在C區中抽得的2個工廠。

這7個工廠中隨機的抽取2個,全部的可能結果有1/2*7*6=32種。

隨機的抽取的2個工廠至少有一個來自A區的結果有A1,A2),A1,B2),A1,B1),

A1,B3)A1,C2),A1,C1), …………9分

同理A2還能給合5種,一共有11種。  

所以所求的概率為p=11/21

 

查看答案和解析>>

某中學研究性學習小組,為了考察高中學生的作文水平與愛看課外書的關系,在本校高三年級隨機調查了 50名學生.調査結果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.

(Ⅰ)試根據以上數據完成以下2×2列聯表,并運用獨立性檢驗思想,指出有多大把握認為中學生的作文水平與愛看課外書有關系?

高中學生的作文水平與愛看課外書的2×2列聯表

 

愛看課外書

不愛看課外書

總計

作文水平好

 

 

 

作文水平一般

 

 

 

總計

 

 

 

(Ⅱ)將其中某5名愛看課外書且作文水平好的學生分別編號為1、2、3、4、5,某5名愛看課外書且作文水平一般的學生也分別編號為1、2、3、4、5,從這兩組學生中各任選1人進行學習交流,求被選取的兩名學生的編號之和為3的倍數或4的倍數的概率.

參考公式:,其中.

參考數據:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【解析】本試題主要考查了古典概型和列聯表中獨立性檢驗的運用。結合公式為判定兩個分類變量的相關性,

第二問中,確定

結合互斥事件的概率求解得到。

解:因為2×2列聯表如下

 

愛看課外書

不愛看課外書

總計

作文水平好

 18

 6

 24

作文水平一般

 7

 19

 26

總計

 25

 25

 50

 

查看答案和解析>>

已知各項都不為零的數列的前n項和為,向量,其中N*,且

(Ⅰ)求數列的通項公式及

(Ⅱ)若數列的前n項和為,且(其中是首項,第四項為的等比數列的公比),求證:

【解析】本試題主要考查了數列的通項公式和前n項和公式的運用。

(1)因為,對n=1, 分別求解通項公式,然后合并。利用,求解

(2)利用

裂項后求和得到結論。

解:(1)  ……1分

時,……2分

)……5分

……7分

……9分

證明:當時,

時,

查看答案和解析>>

下表是關于宿州市服裝機械廠某設備的使用年限(年)和所需要的維修費用(萬元)的幾組統計數據:

2

3

4

5

6

2.2

3.8

5.5

6.5

7.0

(Ⅰ)請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程;

(Ⅱ)估計使用年限為10年時,維修費用為多少?

(參考:(1) 

(2) 

【解析】本試題主要考查了線性回歸方程的求解和簡單的運用。

 

查看答案和解析>>

已知點),過點作拋物線的切線,切點分別為、(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質的運用。直線與圓的位置關系的運用。

中∵直線與曲線相切,且過點,∴,利用求根公式得到結論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數的性質圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點,∴,即,

,或, --------------------3分

同理可得:,或----------------4分

,∴,. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率,

∴直線的方程為:,又,

,即. -----------------7分

∵點到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,    ………10分

,

當且僅當,即,時取等號.

故圓面積的最小值

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视