1.用鋼筆或圓珠筆直接答在試題卷中. 查看更多

 

題目列表(包括答案和解析)

某學校舉辦“有獎答題”活動,每位選手最多答10道題,每道題對應1份獎品,每份獎品價值相同.若選手答對一道題,則得到該題對應的獎品.答對一道題之后可選擇放棄答題或繼續答題,若選擇放棄答題,則得到前面答對題目所累積的獎品;若選擇繼續答題,一旦答錯,則前面答對題目所累積的獎品將全部送給現場觀眾,結束答題.假設某選手答對每道題的概率均為
23
,且各題之間答對與否互不影響.已知該選手已經答對前6道題.
(Ⅰ)如果該選手選擇繼續答題,并在最后4道題中,在每道題答對后都選擇繼續答題.
(ⅰ)求該選手第8題答錯的概率;
(ⅱ)記該選手所獲得的獎品份數為ξ,寫出隨機變量ξ的所有可能取值并求ξ的數學期望Eξ;
(Ⅱ)如果你是該選手,你是選擇繼續答題還是放棄答題?若繼續答題你將答到第幾題?請用概率或統計的知識給出一個合理的解釋.

查看答案和解析>>

某學校舉辦“有獎答題”活動,每位選手最多答10道題,每道題對應1份獎品,每份獎品價值相同.若選手答對一道題,則得到該題對應的獎品.答對一道題之后可選擇放棄答題或繼續答題,若選擇放棄答題,則得到前面答對題目所累積的獎品;若選擇繼續答題,一旦答錯,則前面答對題目所累積的獎品將全部送給現場觀眾,結束答題.假設某選手答對每道題的概率均為,且各題之間答對與否互不影響.已知該選手已經答對前6道題.
(Ⅰ)如果該選手選擇繼續答題,并在最后4道題中,在每道題答對后都選擇繼續答題.
(。┣笤撨x手第8題答錯的概率;
(ⅱ)記該選手所獲得的獎品份數為ξ,寫出隨機變量ξ的所有可能取值并求ξ的數學期望Eξ;
(Ⅱ)如果你是該選手,你是選擇繼續答題還是放棄答題?若繼續答題你將答到第幾題?請用概率或統計的知識給出一個合理的解釋.

查看答案和解析>>

答卷前,考生務必用黑色字跡的鋼筆或簽字筆將自己的姓名、班級和考號填寫在答題卷上。

查看答案和解析>>

小華到某文具店想買2支鋼筆或3支圓珠筆,現知6支鋼筆和3支圓珠筆的價格之和大于24元,而4支鋼筆和5支圓珠筆的價格之和小于22元,若設2支鋼筆的價格為元,3支圓珠筆的價格為元,則         (    )

    A.            B.             C.            D.不確定

 

查看答案和解析>>

必須用黑色字跡鋼筆或簽字筆作答,答案必須寫在答題卷各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用鉛筆和涂改液。不按以上要求作答的答案無效。

第Ⅰ卷   選擇題(共50分)

一、選擇題(本大題共10小題,每小題5分,滿分50分)

1、設全集U={是不大于9的正整數},{1,2,3 },{3,4,5,6}則圖中陰影部分所表示的集合為(  )

       A.{1,2,3,4,5,6}    B. {7,8,9}

       C.{7,8}                        D.    {1,2,4,5,6,7,8,9}

2、計算復數(1-i)2等于(  )

A.0                B.2              C. 4i                   D. -4i

查看答案和解析>>

一、選擇題

1.D  2.B  3.B  4.B  5.A  6.B  7.C  8.B  9.C  10.A  11.B  12.D

2,4,6

2,4,6

三、解答題

17.(本小題滿分12分)

       解證:(I)

       由余弦定理得              …………4分

       又                                               …………6分

     (II)

                                          …………10分

                                                          

       即函數的值域是                                                          …………12分

18.(本小題滿分12分)

       解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

                                                                        …………5分

(II)                   …………6分

                                                         …………7分

              …………9分

                                       …………12分

19.(本小題滿分12分)

     (I)證明:依題意知:

                                      …………2分

     …4分

   (II)由(I)知平面ABCD

       ∴平面PAB⊥平面ABCD.                        …………4分

     在PB上取一點M,作MNAB,則MN⊥平面ABCD,

       設MN=h

       則

                            …………6分

       要使

       即MPB的中點.                                                                  …………8分

       建立如圖所示的空間直角坐標系

       則A(0,0,0),B(0,2,0),

       C(1,1,0),D(1,0,0),

       P(0,0,1),M(0,1,

       由(I)知平面,則

       的法向量。                   …………10分

       又為等腰

      

       因為

       所以AM與平面PCD不平行.                                                  …………12分

20.(本小題滿分12分)

       解:(I)已知,

       只須后四位數字中出現2個0和2個1.

                                             …………4分

   (II)的取值可以是1,2,3,4,5,.

      

                                                              …………8分

       的分布列是

   

1

2

3

4

5

P

                                                                                                      …………10分

                 …………12分

   (另解:記

       .)

21.(本小題滿分12分)

       解:(I)設M,

        由

       于是,分別過A、B兩點的切線方程為

         ①

         ②                           …………2分

       解①②得    ③                                                 …………4分

       設直線l的方程為

       由

         ④                                               …………6分

       ④代入③得

       即M

       故M的軌跡方程是                                                      …………7分

   (II)

      

                                                                                 …………9分

   (III)

       的面積S最小,最小值是4                      …………11分

       此時,直線l的方程為y=1                                                      …………12分

22.(本小題滿分14分)

       解:(I)                           …………2分

       由                                                           …………4分

      

       當的單調增區間是,單調減區間是

                                                                                     …………6分

       當的單調增區間是,單調減區間是

                                                                                      …………8分

   (II)當上單調遞增,因此

      

                                                                                                      …………10分

       上單調遞減,

       所以值域是                           …………12分

       因為在

                                                                                                      …………13分

       所以,a只須滿足

       解得

       即當使得成立.

                                                                                                      …………14分

 

 


同步練習冊答案
久久精品免费一区二区视