PAD⊥面ABCD. (Ⅰ)證明:平面PAD⊥PCD, (Ⅱ)試在棱PB上確定一點M.使截面AMC 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分別是PB,PC的中點。

       (1)證明:EF∥平面PAD;

       (2)求三棱錐E-ABC的體積V。

 

 

 

 

查看答案和解析>>

如圖,四棱錐P -ABCD的底面是矩形,側面PAD是正三角形,且側面PAD⊥底面ABCD,E 為側棱PD的中點。
(1)證明:PB//平面EAC;
(2)若AD="2AB=2," 求直線PB與平面ABCD所成角的正切值;

查看答案和解析>>

如圖,四棱錐P -ABCD的底面是矩形,側面PAD是正三角形,且側面PAD⊥底面ABCD,E 為側棱PD的中點。
(1)證明:PB//平面EAC;
(2)若AD="2AB=2," 求直線PB與平面ABCD所成角的正切值;

查看答案和解析>>

如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點F是PB的中點,點E在邊BC上移動。
(1)求三棱錐E-PAD的體積;
(2)點E為BC的中點時,試判斷EF與平面PAC的位置關系,并說明理由;
(3)證明:無論點E在BC邊的何處,都有PE⊥AF.

查看答案和解析>>

如圖,在四棱錐P-ABCD中,側面PAD⊥底面ABCD,側棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點。
(1)求證:PO⊥平面ABCD;
(2)求異面直線PD與CD所成角的大。
(3)線段AD上是否存在點Q,使得它到平面PCD的距離為?若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

一、選擇題

1.D  2.B  3.B  4.B  5.A  6.B  7.C  8.B  9.C  10.A  11.B  12.D

2,4,6

2,4,6

三、解答題

17.(本小題滿分12分)

       解證:(I)

       由余弦定理得              …………4分

       又                                               …………6分

     (II)

                                          …………10分

                                                          

       即函數的值域是                                                          …………12分

18.(本小題滿分12分)

       解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

                                                                        …………5分

(II)                   …………6分

                                                         …………7分

              …………9分

                                       …………12分

19.(本小題滿分12分)

     (I)證明:依題意知:

                                      …………2分

     …4分

   (II)由(I)知平面ABCD

       ∴平面PAB⊥平面ABCD.                        …………4分

     在PB上取一點M,作MNAB,則MN⊥平面ABCD,

       設MN=h

       則

                            …………6分

       要使

       即MPB的中點.                                                                  …………8分

       建立如圖所示的空間直角坐標系

       則A(0,0,0),B(0,2,0),

       C(1,1,0),D(1,0,0),

       P(0,0,1),M(0,1,

       由(I)知平面,則

       的法向量。                   …………10分

       又為等腰

      

       因為

       所以AM與平面PCD不平行.                                                  …………12分

20.(本小題滿分12分)

       解:(I)已知

       只須后四位數字中出現2個0和2個1.

                                             …………4分

   (II)的取值可以是1,2,3,4,5,.

      

                                                              …………8分

       的分布列是

   

1

2

3

4

5

P

                                                                                                      …………10分

                 …………12分

   (另解:記

       .)

21.(本小題滿分12分)

       解:(I)設M,

        由

       于是,分別過A、B兩點的切線方程為

         ①

         ②                           …………2分

       解①②得    ③                                                 …………4分

       設直線l的方程為

       由

         ④                                               …………6分

       ④代入③得

       即M

       故M的軌跡方程是                                                      …………7分

   (II)

      

                                                                                 …………9分

   (III)

       的面積S最小,最小值是4                      …………11分

       此時,直線l的方程為y=1                                                      …………12分

22.(本小題滿分14分)

       解:(I)                           …………2分

       由                                                           …………4分

      

       當的單調增區間是,單調減區間是

                                                                                     …………6分

       當的單調增區間是,單調減區間是

                                                                                      …………8分

   (II)當上單調遞增,因此

      

                                                                                                      …………10分

       上單調遞減,

       所以值域是                           …………12分

       因為在

                                                                                                      …………13分

       所以,a只須滿足

       解得

       即當、使得成立.

                                                                                                      …………14分

 

 


同步練習冊答案
久久精品免费一区二区视