題目列表(包括答案和解析)
設點是拋物線
的焦點,
是拋物線
上的
個不同的點(
).
(1) 當時,試寫出拋物線
上的三個定點
、
、
的坐標,從而使得
;
(2)當時,若
,
求證:;
(3) 當時,某同學對(2)的逆命題,即:
“若,則
.”
開展了研究并發現其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點為
,設
,
分別過作拋物線
的準線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
第三問中①取時,拋物線
的焦點為
,
設,
分別過
作拋物線
的準線
垂線,垂足分別為
.由拋物線定義得
,
則,不妨取
;
;
;
解:(1)拋物線的焦點為
,設
,
分別過作拋物線
的準線
的垂線,垂足分別為
.由拋物線定義得
因為,所以
,
故可取滿足條件.
(2)設,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
又因為
;
所以.
(3) ①取時,拋物線
的焦點為
,
設,
分別過
作拋物線
的準線
垂線,垂足分別為
.由拋物線定義得
,
則,不妨取
;
;
;
,
則,
.
故,
,
,
是一個當
時,該逆命題的一個反例.(反例不唯一)
② 設,分別過
作
拋物線的準線
的垂線,垂足分別為
,
由及拋物線的定義得
,即
.
因為上述表達式與點的縱坐標無關,所以只要將這
點都取在
軸的上方,則它們的縱坐標都大于零,則
,
而,所以
.
(說明:本質上只需構造滿足條件且的一組
個不同的點,均為反例.)
③ 補充條件1:“點的縱坐標
(
)滿足
”,即:
“當時,若
,且點
的縱坐標
(
)滿足
,則
”.此命題為真.事實上,設
,
分別過作拋物線
準線
的垂線,垂足分別為
,由
,
及拋物線的定義得,即
,則
,
又由,所以
,故命題為真.
補充條件2:“點與點
為偶數,
關于
軸對稱”,即:
“當時,若
,且點
與點
為偶數,
關于
軸對稱,則
”.此命題為真.(證略)
設A是如下形式的2行3列的數表,
a |
b |
c |
d |
e |
f |
滿足性質P:a,b,c,d,e,f,且a+b+c+d+e+f=0
記為A的第i行各數之和(i=1,2),
為A的第j列各數之和(j=1,2,3)記
為
中的最小值。
(1)對如下表A,求的值
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數表A形如
1 |
1 |
-1-2d |
d |
d |
-1 |
其中,求
的最大值
(3)對所有滿足性質P的2行3列的數表A,求的最大值。
【解析】(1)因為,
,所以
(2),
因為,所以
,
所以
當d=0時,取得最大值1
(3)任給滿足性質P的數表A(如圖所示)
a |
b |
c |
d |
e |
f |
任意改變A的行次序或列次序,或把A中的每個數換成它的相反數,所得數表仍滿足性質P,并且
,因此,不妨設
,
,
由得定義知,
,
,
,
從而
所以,,由(2)知,存在滿足性質P的數表A使
,故
的最大值為1
【考點定位】此題作為壓軸題難度較大,考查學生分析問題解決問題的能力,考查學生嚴謹的邏輯思維能力
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調遞減;當
時
單調遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. 、
令則
當時,
單調遞增;當
時,
單調遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即
從而,
又
所以因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
已知函數 R).
(Ⅰ)若 ,求曲線
在點
處的的切線方程;
(Ⅱ)若 對任意
恒成立,求實數a的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。
第一問中,利用當時,
.
因為切點為(
),
則
,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即
即可。
Ⅰ)當時,
.
,
因為切點為(),
則
,
所以在點()處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以
恒成立,
故在
上單調遞增,
……12分
要使恒成立,則
,解得
.……15分
解法二:
……7分
(1)當時,
在
上恒成立,
故在
上單調遞增,
即
.
……10分
(2)當時,令
,對稱軸
,
則在
上單調遞增,又
① 當,即
時,
在
上恒成立,
所以在
單調遞增,
即
,不合題意,舍去
②當時,
,
不合題意,舍去 14分
綜上所述:
(文)若以連續擲兩次骰子分別得到的點數m、n作為點P的橫、縱坐標,則點P在直線x+y=5下方的概率是________.
(理)由于電腦故障,使得隨機變量ζ的分布列中部分數據丟失(以□代替),其表如下:
請你先將丟失的數據補齊,再求隨機變量ζ的數學期望,其期望值為________.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com