學習的目的是為了使自然人過渡到社會人、使社會人更好地服務于社會,由于社會時刻在發生著變化,因此,一個良好的社會人必需具備適應社會變化的能力。讓學生懂得用現成的方法解決現成的問題僅僅是學習的第一步,學習的更高境界是提出新問題、提出解決問題的新方案。因此首先必須改變那種只局限于教師給題學生做題的被動的、封閉的意識,為了使數學適應時代的需要,我們選擇了數學開放題作為一個切入口,開放題的引入,促進了數學教育的開放化和個性化,從發現問題和解決問題中培養學生的創新精神和實踐能力。
關于開放題目前尚無確切的定論,通常是改變命題結構,改變設問方式,增強問題的探索性以及解決問題過程中的多角度思考,對命題賦予新的解釋進而形成和發現新的問題。近兩年高考題中也出現了開放題的“影子”,如1998年第(19)題:“關于函數f(x)=4Sin(2x+π/3)(x∈R),有下列命題:①由f(x1)=f(x2)=0可得x1-x2必是π的整數倍;②y=f(x)的表達式可改寫為y=4Cos(2x-π/6):③y=f(x)的圖象關于點(-π/6,0)對稱;④y=f(x)的圖象關于直線x=-π/6對稱。其中正確的命題是──(注:把你認為正確的命題的序號都填上)”顯然《高中代數》上冊第184頁例4“作函數y=3Sin(2x+π/3)的簡圖!笨勺鳛槠湓。學生如果明白這些道理就會產生對問題開放的需求,逐步形成自覺的開放意識。又如2000年理19文20題 函數單調性的參數取值范圍問題(既有條件開放又有結論的開放,條件上,對,是選擇
,還是選擇
?選擇前者則得
,以后的道路荊棘叢生,而選擇后者則有
,以后的道路一片光明;結論開放體現在結論分為兩段,一段上可使函數單調,另一段上不單調,且證明不單調的方法是尋找反例);
從數學考試中引進一定的結合現實背景的問題和開放性問題,已引起了廣大數學教育工作者的極大關注,開放題的研究已成為數學教育的一個熱點。
29.Do you expect to be any possibility that he will be elected chairman?
A.it B.that C.one D.there
答案 D
28.-When shall we meet again to discuss our vacation plan?
-Anytime you feel like .
A.one B.so C.it D.that
答案 C
27.In our city,more and more people want to buy expensive cars,but as to me,I would like
less than 100,000 yuan rather than over the amount.
A.this B.it C.that D.one
答案 D
26.-What an amazing film!It’s the most interesting film I’ve ever seen.
-But I’m sure it won’t interest .
A.somebody B.anybody C.nobody D.everybody
答案 D
25.-Do you think worthwhile to go all the way to Los Angles to buy that computer?
-Well,I’m going to visit some relatives,too.
A.it B./ C.this D.that
答案 A
24.-Bob isn't feeling very well.He has caught a cold.
-Everybody seems to have because of the sudden change of the weather.
A.one B.it C.that D.another
答案 A
23.-What do you think of the performance today?
-Great! But a musical genins could perform so successfully.
A.All B.None C.Anybody D.Everybody
答案 B
22.No one knows exactly when our ancestors started talking,but new evidence suggests might
have happened a long time ago.
A.which B.what C.it D.they
答案 C
21. professional violinist practices for several hours a day,but violinist has
his own way of playing the Beethoven concert.
A.Each;every B.Every;each C.All;every D.Either;every
答案 B
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com