【題目】如圖,二次函數與
軸交于
、
兩點,與
軸交于
頂點,已知
,
.
(1)求此二次函數的解析式及點坐標.
(2)在拋物線上存在一點使
的面積為10,不存在說明理由,如果存在,請求出
的坐標.
(3)根據圖象直接寫出時,
的取值范圍.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數的圖象與x軸交于A、B兩點,B點的坐標為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.
(1)求二次函數解析式;
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形.是否存在點P,使四邊形
為菱形?若存在,求出此時點P的坐標;若不存在,請說明理由;
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=1,AD=2,點E是邊AD上的一個動點,把△BAE沿BE折疊,點A落在A′處,如果A′恰在矩形的對稱軸上,則AE的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數(
,
,
為常數且
)中的
與
的部分對應值如下表:
-1 | 0 | 1 | 3 | |
-1 | 3 | 5 | 3 |
給出了結論:
(1)二次函數有最大值,最大值為5;(2)
;(3)
時,
的值隨
值的增大而減。唬4)3是方程
的一個根;(5)當
時,
.則其中正確結論的個數是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發,以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發,以1cm/s的速度沿折線AC
CB方向運動到點B.設△APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映y與x之間關系的是 ( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC的一條邊BC的長為5,另兩邊AB,AC的長分別為關于x的一元二次方程的兩個實數根。
(1)求證:無論k為何值,方程總有兩個不相等的實數根;
(2)當k=2時,請判斷△ABC的形狀并說明理由;
(3)k為何值時,△ABC是等腰三角形,并求△ABC的周長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有這樣一個問題:探究函數的圖象與性質.小東根據學習函數的經驗,對函數
的圖象與性質進行了探究.下面是小東的探究過程,請補充完整:
(1)函數的自變量x的取值范圍是 ;
(2)下表是x與y的幾組對應值.
... | 1 | 2 | 3 | ... | ||||||||
... | m | ... |
求m的值;
(3)如圖,在平面直角坐標系中,已描出了以上表中各對對應值為坐標的點.根據描出的點,畫出該函數的圖象;
(4)進一步探究發現,該函數圖象在第一象限內的最低點的坐標是(1,).結合函數的圖象,寫出該函數的其它性質(寫兩條即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,在五邊形ABCDE中,AB=AE,∠B=∠BAE=∠AED=90°,∠CAD=45°,試猜想BC,CD,DE之間的數量關系.小明經過仔細思考,得到如下解題思路:
將△ABC繞點A逆時針旋轉90°至△AEF,由∠B=∠AED=90°,得∠DEF=180°,即點D,E,F三點共線,易證△ACD≌ ,故BC,CD,DE之間的數量關系是 ;
(2)如圖2,在四邊形ABCD中,AB=AD,∠ABC+∠D=180°,點E,F分別在邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數量關系,并給出證明.
(3)如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°,若BD=2,CE=3,則DE的長為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com