【題目】如圖,等腰直角△ABC中,∠C=90°,AC=BC=,E、F為邊AC、BC上的兩個動點,且CF=AE,連接BE、AF,則BE+AF的最小值為_____.
【答案】2.
【解析】
如圖,作點C關于直線B的對稱點D,連接AD,BD,延長DA到H,使得AH=AD,連接EH,BH,DE.想辦法證明AF=DE=EH,BE+AF的最小值轉化為EH+EB的最小值.
如圖,作點C關于直線B的對稱點D,連接AD,BD,延長DA到H,使得AH=AD,連接EH,BH,DE.
∵CA=CB,∠C=90°,
∴∠CAB=∠CBA=45°,
∵C,D關于AB對稱,
∴DA=DB,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°,
∴∠CAD=∠CBD=∠ADC=∠C=90°,
∴四邊形ACBD是矩形,
∵CA=CB,
∴四邊形ACBD是正方形,
∵CF=AE,CA=DA,∠C=∠EAD=90°,
∴△ACF≌△DAE(SAS),
∴AF=DE,
∴AF+BE=ED+EB,
∵CA垂直平分線段DH,
∴ED=EH,
∴AF+BE=EB+EH,
∵EB+EH≥BH,
∴AF+BE的最小值為線段BH的長,BH=,
∴AF+BE的最小值為2,
故答案為:2.
科目:初中數學 來源: 題型:
【題目】中國科學技術館有“圓與非圓”展品,涉及了“等寬曲線”的知識.因為圓的任何一對平行切線的距離總是相等的,所以圓是“等寬曲線”.除了例以外,還有一些幾何圖形也是“等寬曲線”,如勒洛只角形(圖1),它是分別以等邊三角形的征個頂點為圓心,以邊長為半徑,在另兩個頂點間畫一段圓弧.三段圓弧圍成的曲邊三角形.圖2是等寬的勒洛三角形和圓.
下列說法中錯誤的是( )
A.勒洛三角形是軸對稱圖形
B.圖1中,點A到上任意一點的距離都相等
C.圖2中,勒洛三角形上任意一點到等邊三角形DEF的中心的距離都相等
D.圖2中,勒洛三角形的周長與圓的周長相等
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E是BC上的一點,F在線段DE上,且∠AFE=∠ADC.
(1)若∠AFE=70°,∠DEC=40°,求∠DAF的大。
(2)若DE=AD,求證:△AFD≌△DCE
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關系?請說明理由;
(3)設AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某通訊公司推出了A,B兩種上寬帶網的收費方式(詳情見下表)
設月上網時間為x h(x為非負整數),請根據表中提供的信息回答下列問題
(1)設方案A的收費金額為y1元,方案B的收費金額為y2元,分別寫出y1,y2關于x的函數關系式;
(2)當35<x<50時,選取哪種方式能節省上網費,請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠A=60°,點O為AB上一點,且3AO=AB,以OA為半徑作半圓O,交AC于點D,AB于點E,DE與OC相交于F.
(1)求證:CB與⊙O相切;
(2)若AB=6,求DF的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價格相同,春節期間,兩家采摘園將推出優惠方案,甲園的優惠方案是:游客進園需購買門票,采摘的草莓六折優惠;乙園的優惠方案是:游客進園不需購買門票,采摘的草莓超過一定數量后,超過部分打折優惠.優惠期間,某游客的草莓采摘量為(千克),在甲園所需總費用為
(元),在乙園所需總費用為
(元),
、
與
之間的函數關系如圖所示.
(1)甲采摘園的門票是_____元,兩個采摘園優惠前的草莓單價是每千克____元;
(2)當時,求
與
的函數表達式;
(3)游客在“春節期間”采摘多少千克草莓時,甲、乙兩家采摘園的總費用相同.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與函數y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=
OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數 y=(x-a-2)(x+a)+3.
(1)求該二次函數的圖象的對稱軸.
(2)對于該二次函數圖象上的兩點 P(x1,y1)、Q(x2,y2).
①當 x≥m 時,y 隨 x 的增大而增大,寫出一個符合條件的 m 值;
②當 m≤x2≤m+2,當 x1≤﹣1 時,均有 y1≥y2,求 m 的取值范圍;
(3)當二次函數過(0,3)點時,且與直線 y=kx+2 交于 A、B 兩點,其中有一交點的橫坐標 x0 滿足 1<x0<3, 求 k 的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com