【題目】在我校舉辦的“讀好書、講禮儀”活動中,各班積極行動,圖書角的新書、好書不斷增多,除學校購買的圖書外,還有師生捐獻的圖書,下面是九(1)班全體同學捐獻圖書情況的統計圖(每人都有捐書).
請你根據以上統計圖中的信息,解答下列問題:
(1)該班有學生多少人?
(2)補全條形統計圖.
(3)九(1)班全體同學所捐圖書是 6 本的人數在扇形統計圖中所對應扇形的圓心角為多少度?
(4)請你估計全校 2000 名學生所捐圖書的數量.
【答案】(1)50;(2)詳見解析;(3)36°;(4)全校2000名學生共捐6280冊書.
【解析】
(1)根據捐2本的人數是15人,占30%,即可求出該班學生人數;
(2)根據條形統計圖求出捐4本的人數為,再畫出圖形即可;
(3)用360°乘以所捐圖書是6本的人數所占比例可得;
(4)先求出九(1)班所捐圖書的平均數,再乘以全?側藬2000即可.
(1)∵捐 2 本的人數是 15 人,占 30%,
∴該班學生人數為 15÷30%=50 人;
(2)根據條形統計圖可得:捐 4 本的人數為:50﹣(10+15+7+5)=13;
補圖如下;
(3)九(1)班全體同學所捐圖書是 6 本的人數在扇形統計圖中所對應扇形的圓
心角為 360°×=36°.
(4)∵九(1)班所捐圖書的平均數是;(1×10+2×15+4×13+5×7+6×5)÷50=,
∴全校 2000 名學生共捐 2000×=6280(本),
答:全校 2000 名學生共捐 6280 冊書.
科目:初中數學 來源: 題型:
【題目】某產品每件成本10元,試銷階段每件產品的銷售單價x(元/件)與每天銷售量y(件)之間的關系如下表.
x(元/件) | 15 | 18 | 20 | 22 | … |
y(件) | 250 | 220 | 200 | 180 | … |
(1)直接寫出:y與x之間的函數關系 ;
(2)按照這樣的銷售規律,設每天銷售利潤為w(元)即(銷售單價﹣成本價)x每天銷售量;求出w(元)與銷售單價x(元/件)之間的函數關系;
(3)銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電視臺的一檔娛樂性節目中,在游戲PK環節,為了隨機分選游戲雙方的組員,主持人設計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+5經過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結CD.
(1)求該拋物線的表達式;
(2)點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.
①當點P在直線BC的下方運動時,求△PBC的面積的最大值;
②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動點P、Q分別以3cm/s、2cm/s的速度從點A、C同時出發,點Q從點C向點D移動.
(1)若點P從點A移動到點B停止,點Q隨點P的停止而停止移動,點P、Q分別從點A、C同時出發,問經過多長時間P、Q兩點之間的距離是10cm?
(2)若點P沿著AB→BC→CD移動,點P、Q分別從點A、C同時出發,點Q從點C移動到點D停止時,點P隨點Q的停止而停止移動,試探求經過多長時間△PBQ的面積為12cm2?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在學習了矩形這節內容之后,明明同學發現生活中的很多矩形都很特殊,如我們的課本封面、A4 的打印紙等,這些矩形的長與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD 中,點 P 為 AB 邊上的定點,且 AP=AD.
(1)求證:PD=AB.
(2)如圖(2),若在“完美矩形“ABCD 的邊 BC 上有一動點 E,當的值是多少時,△PDE 的周長最?
(3)如圖(3),點 Q 是邊 AB 上的定點,且 BQ=BC.已知 AD=1,在(2)的條件下連接 DE 并延長交 AB 的延長線于點 F,連接 CF,G 為 CF 的中點,M、N 分別為線段 QF 和 CD 上的動點,且始終保持 QM=CN,MN 與 DF 相交于點 H,請問 GH 的長度是定值嗎?若是,請求出它的值,若不是,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,△CDE為等邊三角形,CD=2,連接AD,M為AD中點.
(1)如圖1,當B,C,E三點共線時,請畫出△EDM關于點M的中心對稱圖形,并證明BM⊥ME;
(2)如圖2,當A,C,E三點共線時,求BM的長;
(3)如圖3,取BE中點N,連MN,將△CDE繞點C旋轉,直接寫出旋轉過程中線段MN的取值范圍是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】勘測隊按實際需要構建了平面直角坐標系,并標示了A,B,C三地的坐標,數據如圖(單位:km).筆直鐵路經過A,B兩地.
(1)A,B間的距離為______km;
(2)計劃修一條從C到鐵路AB的最短公路l,并在l上建一個維修站D,使D到A,C的距離相等,則C,D間的距離為______km.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某景區在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發,甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關于時間t(分鐘)的函數圖像如圖所示.
(1)甲的速度是 米/分鐘;
(2)當20≤t ≤30時,求乙離景點A的路程s與t的函數表達式;
(3)乙出發后多長時間與甲在途中相遇?
(4)若當甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com