【題目】已知二次函數y1=ax2+bx+c(a>0)的圖象與x軸交于A(﹣1,0)、B(n,0)兩點,一次函數y2=2x+b的圖象過點A.
(1)若a=,
①求二次函數y1=ax2+bx+c(a>0)的函數關系式;
②設y3=y1﹣my2,是否存在正整數m,當x≥0時,y3隨x的增大而增大?若存在,求出正整數m的值;若不存在,請說明理由;
(2)若<a<
,求證:﹣5<n<﹣4.
科目:初中數學 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=
x2+bx+c經過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數關系式以及p的最大值;
(3)將△AOB繞平面內某點M旋轉90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數和旋轉180°時點A1的橫坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AB=AC,∠BAC=36°,過點A作AD∥BC,與∠ABC的平分線交于點D,BD與AC交于點E,與⊙O交于點F.
(1)求∠DAF的度數;
(2)求證:AE2=EFED;
(3)求證:AD是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋中有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中有白球2個,黃球1個,小明將球攪勻后從中摸出一個球是紅球的概率是0.25.
(1)求口袋中紅球的個數;
(2)若小明第一次從中摸出一個球,放回攪勻后再摸出一個球,請通過樹狀圖或者列表的方法求出小明兩次均摸出紅球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,,
分別是正方形
的邊
,
上的點,且
,以
為邊作正方形
,
與
交于點
,連接
.
(1)求證:;
(2)若是
的中點,求證:
為
的中點;
(3)連接,設
,
,
,在(2)的條件下,判斷
是否成立?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】主題班會課上,王老師出示了如圖一幅漫畫,經過同學們的一番熱議,達成以下四個觀點:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理競爭,合作雙贏.
要求每人選取其中一個觀點寫出自己的感悟,根據同學們的選擇情況,小明繪制了如圖兩幅不完整的圖表,請根據圖表中提供的信息,解答下列問題:
觀點 | 頻數 | 頻率 |
A | a | 0.2 |
B | 12 | 0.24 |
C | 8 | b |
D | 20 | 0.4 |
(1)參加本次討論的學生共有 人;
(2)表中a= ,b= ;
(3)將條形統計圖補充完整;
(4)現準備從A,B,C,D四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點D(合理競爭,合作雙贏)的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5,AC=3,BC為半圓O的直徑,將△ABC沿射線CB方向平移得到△A1B1C1.當A1B1與半圓O相切于點D時,平移的距離的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為解決部分市民冬季集中取暖問題,需鋪設一條長4000米的管道,為盡量減少施工對交通造成的影響,施工時“…”,設實際每天鋪設管道x米,則可得方程=20,根據此情景,題中用“…”表示的缺失的條件應補為( 。
A. 每天比原計劃多鋪設10米,結果延期20天完成
B. 每天比原計劃少鋪設10米,結果延期20天完成
C. 每天比原計劃多鋪設10米,結果提前20天完成
D. 每天比原計劃少鋪設10米,結果提前20天完成
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com