【題目】在四棱柱ABCD﹣A1B1C1D1中,四邊形ABCD為平行四邊形,AA1⊥平面ABCD,∠BAD=60°,AB=2,BC=1.AA1= ,E為A1B1的中點.
(1)求證:平面A1BD⊥平面A1AD;
(2)求多面體A1E﹣ABCD的體積.
【答案】
(1)證明:∵AB=2,AD=BC=1,∠BAD=60°,
∴BD= =
,
∴BD2+AD2=AB2,∴AB⊥AD,
∵AA1⊥平面ABCD,BD平面ABCD,
∴BD⊥AA1,又AA1∩AD=A,AA1平面A1AD,AD平面A1AD,
∴BD⊥平面A1AD,又BD平面A1BD,
∴平面A1BD⊥平面A1AD.
(2)解:連接A1C,S四邊形ABCD=2S△ABD=2× =
,
∴V =
=
=
,
設C到AB的距離為h,則h= =
,則C到平面ABB1A1的距離為h=
,
∴V =
=
=
.
∴多面體A1E﹣ABCD的體積V=V +V
=
.
【解析】(1)求出BD,再利用勾股定理的逆定理證明BD⊥AD,結合BD⊥AA1即可得出BD⊥平面A1AD,從而平面A1BD⊥平面A1AD;(2)將多面體分解成三棱錐C﹣A1BE和四棱錐A1﹣ABCD,分別計算兩個棱錐的體積即可得出多面體的體積.
【考點精析】認真審題,首先需要了解平面與平面垂直的判定(一個平面過另一個平面的垂線,則這兩個平面垂直).
科目:初中數學 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數據:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732, ≈1.732,
≈1.414)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,圖①是某電腦液晶顯示器的側面圖,顯示屏AO可以繞點O旋轉一定的角度.研究表明:顯示屏頂端A與底座B的連線AB與水平線BC垂直時(如圖②),人觀看屏幕最舒適.此時測得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的長度.(結果精確到1 cm)(參考數據:sin15°≈0.26,cos15°≈0.97, tan15°≈0.27, ≈1.414)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設不等式0<|x+2|﹣|1﹣x|<2的解集為M,a,b∈M
(1)證明:|a+ b|<
;
(2)比較|4ab﹣1|與2|b﹣a|的大小,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數段的人數(x)與數學成績相應分數段的人數(y)之比如表所示,求數學成績在[50,90)之外的人數.
分數段 | [50,60) | [60,70) | [70,80) | [80,90) |
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設函數f(x)=x3﹣2ex2+mx﹣lnx,記g(x)= ,若函數g(x)至少存在一個零點,則實數m的取值范圍是( )
A.(﹣∞,e2+ ]
B.(0,e2+ ]
C.(e2+ ,+∞]
D.(﹣e2﹣ ,e2+
]
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某廠家為了解銷售轎車臺數與廣告宣傳費之間的關系,得到如表統計數據表:根據數據表可得回歸直線方程 ,其中
,
,據此模型預測廣告費用為9萬元時,銷售轎車臺數為( )
廣告費用x(萬元) | 2 | 3 | 4 | 5 | 6 |
銷售轎車y(臺數) | 3 | 4 | 6 | 10 | 12 |
A.17
B.18
C.19
D.20
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com