【題目】如圖所示,二次函數y=ax2+bx+c(a≠0)的圖象經過點(﹣1,2),且與x軸交點的橫坐標分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結論:
①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.
其中正確的結論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】
首先根據拋物線的開口方向可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點中,﹣2<x1<﹣1、0<x2<1說明拋物線的對稱軸在﹣1~0之間,即x=﹣>﹣1,可根據這些條件以及函數圖象上一些特殊點的坐標來進行判斷
由圖知:拋物線的開口向下,則a<0;拋物線的對稱軸x=﹣>﹣1,且c>0;
①由圖可得:當x=﹣2時,y<0,即4a﹣2b+c<0,故①正確;
②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正確;
③拋物線對稱軸位于y軸的左側,則a、b同號,又c>0,故abc>0,所以③不正確;
④由于拋物線的對稱軸大于﹣1,所以拋物線的頂點縱坐標應該大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正確;
因此正確的結論是①②④.
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,與
是兩個全等的等邊三角形,
.有下列四個結論:①
;②
;③直線
垂直平分線段
;④四邊形
是軸對稱圖形.其中正確的結論有_____.(把正確結論的序號填在橫線上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,拋物線y=﹣x2+bx+c經過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對稱軸上,是否存在點P,使PA+PC的值最小?如果存在,請求出點P的坐標,如果不存在,請說明理由;(3)設點M在拋物線的對稱軸上,當△MAC是直角三角形時,求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點O,連接BO.若∠DAC=26°,則∠OBC的度數為( )
A. 54°B. 64°C. 74°D. 26°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形OABC在平面直角坐標系中的位置如圖所示,已知,點A在x軸上,點C在y軸上,P是對角線OB上一動點(不與原點重合),連接PC,過點P作
,交x軸于點D.下列結論:①
;②當點D運動到OA的中點處時,
;③在運動過程中,
是一個定值;④當△ODP為等腰三角形時,點D的坐標為
.其中正確結論的個數是( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△OAB中,OA=OB,⊙O經過AB的中點C,與OB交于點D,且與BO的延長線交于點E,連接EC,CD.
(1)試判斷AB與⊙O的位置關系,并加以證明;
(2)若tanE=,⊙O的半徑為3,求OA的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》是中國古代數學專著,在數學上有其獨到的成就,不僅最早提到了分數問題,也首先記錄了“盈不足”等問題.如有一道闡述“盈不足”的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數、雞價各幾何?譯文為:現有若干人合伙出錢買雞,如果每人出9文錢,就會多11文錢;如果每人出6文錢,又會缺16文錢.問買雞的人數、雞的價格各是多少?請解答上述問題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】八(1)班數學老師將本班某次參加的數學競賽成績(得分取整數,滿分100分)進行整理統計后,制成如下的頻數直方圖和扇形統計圖,請根據統計圖提供的信息,解答下列問題:
(1)在分數段70.5~80.5分的頻數、頻率分別是多少?
(2)m、n、的值分別是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com