【題目】如圖,在平行四邊形ABCD中,AC=CD,若點E、F分別為邊BC、CD上的兩點,且∠EAF=∠CAD.
(1)求證:△ADF∽△ACE;
(2)求證:AE=EF.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據平行四邊形的性質可得到∠BCA=∠CAB,由等邊對等角可得到∠CAD=∠D,根據平行四邊形的性質利用SAS可判定△BCA≌△DAC,由全等三角形的性質即可得到∠D=∠ACB,再根據相似三角形的判定得出即可;
(2)由△ADF∽△ACE可得到對應邊成比例,已知∠EAF=∠CAD從而可推出△AEF∽△ACD,已知AC=CD,根據對應成比例不難得到結論.
解:(1)∵AC=CD,
∴∠D=∠CAD.
∵平行四邊形ABCD,
∴AD∥BC,
∴∠CAD=∠ACB,
∴∠D=∠ACB.
∵∠EAF=∠CAD,
∴∠DAF=∠CAE,
∴△ADF∽△ACE;
(2)∵△ADF∽△ACE,
∴,
∵∠EAF=∠CAD,
∴△AEF∽△ACD,
∴,
又∵AC=CD,
∴AE=EF.
科目:初中數學 來源: 題型:
【題目】如圖,點E在菱形ABCD的對角線BD上,連接AE,且AE=BE,⊙O是△ABE的外接圓,連接OB.
(1)求證:OB⊥BC;
(2)若BD=,tan∠OBD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點E,F,G分別是等邊三角形ABC三邊AB,BC,CA上的動點,且始終保持AE=BF=CG,設△EFG的面積為y,AE的長為x,y關于x的函數圖象大致為圖2所示,則等邊三角形ABC的邊長為___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察猜想:(1)如圖①,在Rt△ABC中,∠BAC=90°,AB=AC=3,點D與點A重合,點E在邊BC上,連接DE,將線段DE繞點D順時針旋轉90°得到線段DF,連接BF,BE與BF的位置關系是 ,BE+BF= ;
探究證明:(2)在(1)中,如果將點D沿AB方向移動,使AD=1,其余條件不變,如圖②,判斷BE與BF的位置關系,并求BE+BF的值,請寫出你的理由或計算過程;
拓展延伸:(3)如圖③,在△ABC中,AB=AC,∠BAC=a,點D在邊BA的延長線上,BD=n,連接DE,將線段DE繞著點D順時針旋轉,旋轉角∠EDF=a,連接BF,則BE+BF的值是多少?請用含有n,a的式子直接寫出結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,AB=10,AC=6,點E、F分別是邊AC、BC上的動點,過點E作ED⊥AB于點D,過點F作FG⊥AB于點G,DG的長始終為2.
(1)當AD=3時,求DE的長;
(2)當點E、F在邊AC、BC上移動時,設,求y關于x的函數解析式,并寫出函數的定義域;
(3) 在點E、F移動過程中,△AED與△CEF能否相似,若能,求AD的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 圖1是一款優雅且穩定的拋物線型落地燈.防滑螺母C為拋物線支架的最高點,燈罩D距離地面1.86米,燈柱AB及支架的相關數據如圖2所示.若茶幾擺放在燈罩的正下方,則茶幾到燈柱的距離AE為_____米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C,P均在⊙O上,且分布在直徑AB的兩側,BE⊥CP于點E.
(1)求證:△CAB∽△EPB;
(2)若AB=10,AC=6,BP=5,求CP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O是邊長為2的正方形ABCD的中心.函數y=(x﹣h)2的圖象與正方形ABCD有公共點,則h的取值范圍是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com